98%
921
2 minutes
20
Biochar application emerges as a valuable soil management strategy for enhancing crop yield; however, the mechanisms underlying the relationships between soil and plants remain unclear after biochar application. In this study, soil pore characteristics and maize yield were assessed in a five-year biochar-application experiment on the Loess Plateau of China, including four treatments: Control (no biochar), low-dose biochar application (LB, 3 t ha), moderate-dose biochar application (MB, 6 t ha), and high-dose biochar application (HB, 9 t ha). Root growth traits were evaluated by cultivating maize in intact soil cores collected from field conditions using X-ray computed tomography. Our findings indicate that, compared to the Control, the HB treatment enhanced macroporosity (> 0.1 mm in diameter), porosity of 0.1-0.5 mm pores, and saturated water content, while reducing macropore connectivity and penetration resistance. However, biochar application treatments did not alter the water retention characteristics from field capacity to permanent wilting point or the plant-available water content (PAWC). Furthermore, the mean angle of primary and seminal roots as well as the length and surface area of entire roots increased in the HB treatment, showing a positive correlation with the porosity of 0.1-0.5 mm pores. The mean diameter of primary and seminal roots, leaf fresh and dry weights, and maize yield also increased in the HB treatment compared to the Control. Partial least squares path modeling analysis indicated that biochar application rates positively impacted on root growth and plant productivity through an indirect influence of soil pore size distribution, with 0.1-0.5 mm pores being particularly crucial for facilitating deeper root penetration and root elongation. These findings demonstrate that biochar application primarily augmented 0.1-0.5 mm pores, rather than affecting smaller pores capable of retaining plant-available water or larger macropores, enhancing deeper rooting and root elongation, thus improving plant productivity and crop yield.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.177379 | DOI Listing |
Bioresour Technol
September 2025
School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu 221018, China.
Water eutrophication has emerged as a pervasive ecological challenge worldwide. To realize the resource utilization of waste and nutrients, a novel rape straw-derived biochar-calcium alginate composite (M-CA-RBC) immobilized Pseudomonas sp. H6 was synthesized to simultaneously remove phosphate (PO) and ammonium (NH) from distillery wastewater.
View Article and Find Full Text PDFJ Environ Manage
September 2025
School of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran.
Agricultural supply chains face significant challenges in achieving food security and sustainability, particularly due to climate change and waste production. Effectively managing these supply chains, especially in the context of uncertainties, is crucial for optimizing resource use and minimizing waste. This research develops a multi-objective optimization for designing a sustainable and responsive closed-loop agricultural supply chain network, focusing on jujube products under uncertain conditions.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, 21934, Egypt. Electronic address:
The growing demand for sustainable agriculture imposes innovative biocontrol strategies to mitigate phytopathogen threats while reducing dependence on chemical pesticides. This review explores the current knowledge on enzyme-based biocontrol, focusing on hydrolytic enzymes (e.g.
View Article and Find Full Text PDFJ Hazard Mater
August 2025
School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China. Electronic address:
Residues of veterinary antibiotics such as tylosin in soils can induce selective pressure on indigenous soil microbes and increase the dissemination risk of antibiotic resistance genes (ARGs) by horizontal gene transfer (HGT), which poses a serious threat to both soil and public health. While conventional bioremediation methods face challenges in efficiency and stability, enzyme-based approaches offer promising alternatives. This study developed a novel biochar-immobilized tylosin-degrading enzyme (BIE) system to simultaneously address tylosin contamination and antibiotic resistance gene (ARG) proliferation in agricultural soils.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
Institute of Pollution Control and Environmental Health, and School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China. Electronic address:
This study presents the first experimental evidence of biochar (BC) aerosol generation via raindrop impact on amended soils, combining controlled rainfall simulations with year-long field monitoring of atmospheric particulates from a BC-treated plot (2.0 wt%). Microscopic and isotopic analyses confirmed BC incorporation in total suspended particles (TSP), accounting for 15.
View Article and Find Full Text PDF