98%
921
2 minutes
20
Recently, YbCdSb-based Zintl compounds have been widely investigated owing to their extraordinary thermoelectric (TE) performance. However, its p orbitals of anions that determined the valence band structure are split due to crystal field splitting that provides a good platform for band manipulation by doping/alloying and, more importantly, the YbCdSb-based device has yet to be reported. In this work, single-phase YbCdZnSb is successfully obtained through precise chemical composition control. Then, YbMgSb-alloying increases the cationic vacancy defect formation energy and further optimizes carrier concentration. Moreover, the band structure of YbCdZnSb is subtly manipulated, and the underlying mechanism is experimentally explored. Combined with the reduced lattice thermal conductivity, a high peak ZT value of ∼1.43 at 700 K is obtained for YbCdZnMgSb. Subsequently, choosing FeSb as the diffusion barrier layer and adopting the transient liquid phase bonding technique, for the first time, it is demonstrated that YbCdSb/Mg(Sb, Bi) TE module with an ultrahigh conversion efficiency of ≈9.0% at a heat difference of 430 K. More importantly, this module displays good thermal stability. This work paves the way for YbCdSb materials and devices in mid-temperature heat recovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202411738 | DOI Listing |
Adv Mater
September 2025
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China.
The exponential growth of data in the information era has pushed conventional optical communication technology to its limitations, including inefficient spectral utilization, slow data rate, and inherent security vulnerabilities. Here, a transformative high-speed organic spectral wireless communication (SWC) technology enabled by a flexible, miniaturized, and high-performance organic hyperspectrometer is proposed that integrates ultrahigh-speed data transmission with hardware-level encryption. By synergistically combining organic photodetector arrays with tunable responsivities and spectral-tunable organic filters, the organic hyperspectrometer achieves a broad spectral detection range of 400 to 900 nm, resolution of 1.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, TaiYuan, 030032, P. R. China.
The photothermal conversion efficiency (PCE) stands as a pivotal determinant in the therapeutic efficacy of photothermal nanoagents (PTNAs) within the context of photothermal therapy (PTT). The dearth of universal strategies to greatly enhance PCE has markedly curtailed the practical deployment of PTNAs. Now this problem is addressed by proposing a universal approach founded on molecular rotors and J-aggregates, "highly efficient molecular motor matrix", to greatly elevate the PCE of traditional PTNAs.
View Article and Find Full Text PDFNanomicro Lett
September 2025
Shenzhen Research Institute of Nanjing University, Nanjing University, Shenzhen, 518057, People's Republic of China.
Zn-I batteries have emerged as promising next-generation energy storage systems owing to their inherent safety, environmental compatibility, rapid reaction kinetics, and small voltage hysteresis. Nevertheless, two critical challenges, i.e.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China.
Nanofluidics-based reverse electrodialysis offers a promising approach for harnessing the osmotic energy that exists between saline and fresh water, thereby providing a sustainable source of power. Nevertheless, the key obstacle to realizing a commercially viable power output stems from inadequate ion permselectivity in nanofluidics. Here, we engineer dual asymmetric MXene-based composite nanofluidics (DA-MXCNs) composed of a negatively charged, porous MXene layer and a positively charged, confined MXene layer, which strategically incorporates asymmetric channel dimensions and opposing charge distributions.
View Article and Find Full Text PDFMater Horiz
September 2025
Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
NIR-II probes show great potential for fluorescence imaging (FLI) and therapeutics, where the molar extinction coefficient (MEC), a pivotal optical parameter, governs their imaging quality and therapeutic efficacy. Nevertheless, engineering NIR-II probes with ultrahigh MEC remains a formidable challenge, limiting their biomedical applications. In this work, we designed a superior NIR-II D-π-A-π-D probe, SCU-SX-T, which features an S-xanthene core as the conjugate acceptor, a diphenylamine (DPA) rotor, and π-bridge that induces bathochromic shifts in absorption/emission spectra while enhancing molecular rigidity and planarity.
View Article and Find Full Text PDF