98%
921
2 minutes
20
Spacecraft recovery technology is crucial in the field of aerospace, in which the parachute plays a key role in slowing down the descent speed of the spacecraft and realizing a smooth landing. In order to construct a dynamically adjustable parachute deployment strategy, it is necessary to measure the parachute dynamic load accurately in real-time. However, the existing sensor measurement scheme makes it difficult to meet the measurement requirements due to its large structure and complex wiring. In order to meet the current demand for real-time measurement of parachute cords dynamic load, a miniature measuring instrument is designed. According to the function and technical requirements of the miniature measuring instrument, the hardware modules of the acquisition system are selected and designed, and the integration debugging and performance optimization of the microcontroller module, A/D sampling module, signal acquisition circuit, and power supply module are carried out. The software of the parachute cords tension acquisition system based on the miniature measuring instrument is developed. The Load Cell is modeled by using SolidWorks 2022 and statically analyzed by using Ansys 2022 R1 Workbench finite element analysis software. Then the final structure of the Load Cell and the pasting position of the strain gauge are determined through the results analysis as well as experimental verification. The hardware module of the signal acquisition system for the miniature measuring instrument is then encapsulated. The force value of the miniature measuring instrument is calibrated and tested many times by using the microcomputer-controlled electronic universal testing machine. The experimental results show that the designed miniature measuring instrument has accurate data, strong stability, and good real-time performance, which meets the demand for real-time accurate measurement of miniature measuring instruments, and can provide reliable data for parachute cords parameter validation and stepless unfolding design.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11478983 | PMC |
http://dx.doi.org/10.3390/s24196232 | DOI Listing |
J Am Soc Mass Spectrom
September 2025
Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu, Anhui 241000, China.
An integrated miniature time-of-flight mass spectrometer (TOF-MS) system coupled with a pocket-size 3D-printed laser-induced acoustic desorption (LIAD) source is described. This 3D-printed LIAD source utilizes only a miniature deceleration motor to achieve two-dimensional motion of the target surface, simplifying the source structure and improving the long-term stability of mass spectrometry measurements. It has been successfully applied to analyze the model molecule creatinine and ingredients in an energy beverage (Red Bull), where main natural nutrients were clearly identified.
View Article and Find Full Text PDFACS Chem Neurosci
September 2025
Chemical and Biomolecular Engineering Dept, University of California, Los Angeles, Los Angeles, California 90095, United States.
Simulations in three dimensions and time provide guidance on implantable, electroenzymatic glutamate sensor design; relative placement in planar sensor arrays; feasibility of sensing synaptic release events; and interpretation of sensor data. Electroenzymatic sensors based on the immobilization of oxidases on microelectrodes have proven valuable for the monitoring of neurotransmitter signaling in deep brain structures; however, the complex extracellular milieu featuring slow diffusive mass transport makes rational sensor design and data interpretation challenging. Simulations show that miniaturization of the disk-shaped device size below a radius of ∼25 μm improves sensitivity, spatial resolution, and the accuracy of glutamate concentration measurements based on calibration factors determined .
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Department of Orthodontics, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key
Clear aligners offer aesthetic and comfort advantages in orthodontics, yet their ability to deliver effective forces relies heavily on empirical judgment or large-scale optical scanning, lacking real-time quantitative evaluation. Integrating pressure sensors into aligners is a promising solution, but challenges in miniaturization, multi-dimensional sensing, measurement accuracy, and biocompatibility hinder clinical application. Here, an all-in-one Orthodontic Force Acquisition System (OFAS) is presented that enables real-time, 3D force monitoring using a cross-shaped iontronic sensing array and an origami-inspired, wireless battery-free readout circuit miniaturized for single-tooth placement.
View Article and Find Full Text PDFBiomed Phys Eng Express
September 2025
Institute of Electrical Engineering Chinese Academy of Sciences, No.6, Zhongguancun Road, Haidian District, Beijing , China, Beijing, Beijing, 100190, CHINA.
Objective: Transcranial magnetic stimulation (TMS) is a promising neuromodulation therapy for treating diseases such as depression and Alzheimer's disease. However, its efficacy depends on precise magnetic field targeting. Current measurement methods face a trade-off between accuracy and complexity.
View Article and Find Full Text PDFNature
September 2025
Department of Physics, University of California, Berkeley, CA, USA.
Trapped-ion applications, such as in quantum information processing, precision measurements, optical clocks and mass spectrometry, rely on specialized high-performance ion traps. The last three of these applications typically use traditional machining to customize macroscopic 3D Paul traps, whereas quantum information processing experiments usually rely on photolithographic techniques to miniaturize the traps and meet scalability requirements. Using photolithography, however, it is challenging to fabricate the complex 3D electrode structures required for optimal confinement.
View Article and Find Full Text PDF