Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nerve guide conduits (NGCs) offer a promising alternative to traditional tools for regenerating peripheral nerves. The efficacy of nerve regeneration and functional recovery is heavily dependent on the electrical, chemical, and physical properties of NGCs. A bionic melt electrowriting (MEW) NGC loaded with placental derived mesenchymal stem cells (PDMSCs) has been developed. Our study introduces a novel approach by utilizing Schwann cells induced from placental mesenchymal stem cells (PDMSCs), showcasing their potential in enhancing nerve regeneration when integrated with conductive nerve guidance conduits. Schwann cells (SCs) are crucial for nerve regeneration, and while various stem cells, including bone marrow stromal cells (BMSCs), have been investigated as sources of SCs for NGC loading, they are often limited by ethical concerns and restricted availability. PDMSCs, however, offer the advantages of widespread sourcing and unique ability to differentiate into SCs, making them an attractive alternative for NGC applications. This NGC utilizes an electrostatic direct writing technique employing polycaprolactone (PCL) for the sheath and a crimped fiber scaffold made of polypyrrole (PPY) incorporated with PDMSCs for its internal structure. The bionic PC-NGC loaded with PDMSCs exhibits favorable characteristics including permeability, mechanical stability, and electrical conductivity. The PPY component effectively transmits physiological nerve signals, thereby promoting nerve regeneration, while the PDMSCs differentiate into Schwann cells, creating a conducive environment for nerve regeneration. This research innovatively combines PDMSCs, known for their wide availability and SC differentiation potential, with a bionic NGC to enhance the treatment of peripheral nerve injuries (PNIs). evaluations have confirmed the excellent biocompatibility of the materials used. Animal experiments using a rat model with sciatic nerve injury demonstrated that the PC-NGC significently facilitated peripheral nerve regeneration. This was evidenced by improvements in axonal myelination, increased muscle mass, enhanced sciatic nerve function index, and positive electrophysiological findings. These outcomes are comparable to those achieved through autologous transplantation. Characterized by its layered oriented fibers, the bionic PC-NGC integrates multi-scale and multifunctional biomaterials with PDMSCs to effectively address peripheral nerve injuries (PNIs). The use of this printed NGC stimulates neuronal cell growth, thereby accelerating nerve regeneration. This innovative approach in tissue engineering presents a promising clinical treatment strategy for PNIs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4tb01374cDOI Listing

Publication Analysis

Top Keywords

nerve regeneration
32
nerve
16
stem cells
12
schwann cells
12
peripheral nerve
12
nerve guide
8
guide conduits
8
regeneration
8
mesenchymal stem
8
pdmscs
8

Similar Publications

Langerhans cell histiocytosis is a relatively rare disease. This article explores the clinicopathological features, differential diagnosis, and biological characteristics of Langerhans cell histiocytosis. A comprehensive analysis was conducted on the clinical data, clinical characteristics, histological observations, immunohistochemical studies, pathological features, treatment, and prognosis of one case of Langerhans cell histiocytosis occurring in the temporal bone, to enhance clinical understanding of this disease.

View Article and Find Full Text PDF

Advanced Applications of Vitamin B Complex in Plastic and Cosmetic Surgery: Mechanisms and Therapeutic Benefits.

Int J Vitam Nutr Res

August 2025

Department of Plastic and Cosmetic Center, The First Affiliated Hospital, Zhejiang University, 310003 Hangzhou, Zhejiang, China.

The vitamin B complex, a group of water-soluble vitamins, is essential for various metabolic and cellular processes and critical for achieving optimal surgical outcomes in plastic and cosmetic procedures. This review examines the mechanistic contributions of this complex at the cellular level, including any roles in mitochondrial bioenergetics, redox balance, gene regulation, and cellular repair mechanisms. Niacinamide, as a precursor to NAD⁺, enhances mitochondrial efficiency and facilitates energy production, supporting tissue regeneration.

View Article and Find Full Text PDF

Conductive nanocomposite hydrogels (CNHs) represent a promising tool in neural tissue engineering, offering tailored electroactive microenvironments to address the complex challenges of neural repair. This systematic scoping review, conducted in accordance with PRISMA-ScR guidelines, synthesizes recent advancements in CNH design, functionality, and therapeutic efficacy for central and peripheral nervous system (CNS and PNS) applications. The analysis of 125 studies reveals a growing emphasis on multifunctional materials, with carbon-based nanomaterials (CNTs, graphene derivatives; 36.

View Article and Find Full Text PDF

Sciatica, often resulting from lumbar disc herniation or nerve compression, disrupts electrical signal transmission, leading to muscle atrophy, mitochondrial dysfunction, and impaired energy metabolism. This study explored the therapeutic effects of Fu's subcutaneous needling (FSN) in a chronic constriction injury (CCI) rat model, assessing its impact on neuropathic pain, muscle mass, and structural integrity. Histological and ultrastructural analyses demonstrated that FSN alleviated hypersensitivity, reduced muscle atrophy, preserved mitochondrial density, and maintained glycogen storage.

View Article and Find Full Text PDF

Purpose: Limitations remain in peripheral nerve injury treatments. Previous studies suggest that serotonergic signaling promotes nerve regeneration by facilitating reinnervation and modulating neuronal guidance. This study aimed to evaluate the potential of serotonergic peripheral neuroregeneration using Zolmitriptan, a serotonin receptor agonist.

View Article and Find Full Text PDF