98%
921
2 minutes
20
Electrochemical carbon dioxide reduction (ECORR) shows great potential to create high-value carbon-based chemicals, while designing advanced catalysts at the atomic level remains challenging. The ECORR performance is largely dependent on the catalyst microelectronic structure that can be effectively modulated through surface defect engineering. Here, we provide an atmosphere-assisted low-temperature calcination strategy to prepare a series of single-atomic Cu/ceria catalysts with varied oxygen vacancy concentrations for robust electrolytic reduction of CO to methane. The obtained Cu/ceria catalyst under H environment (Cu/ceria-H) exhibits a methane Faraday efficiency (FE) of 70.03 % with a turnover frequency (TOF) of 9946.7 h at an industrial-scale current density of 150 mA cm in a flow cell. Detailed studies indicate the copious oxygen vacancies in the Cu/ceria-H are conducive to regulating the surface microelectronic structure with stabilized Cu active center. Furthermore, density functional theory calculations and operando ATR-SEIRAS demonstrate that the Cu/ceria-H can markedly enhance the activation of CO, facilitate the adsorption of pivotal intermediates *COOH and *CO, thus ultimately enabling the high selectivity for CH production. This study presents deep insights into designing effective electrocatalysts for CO to CH conversion by controlling the surface microstructure via the reaction atmosphere.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202415642 | DOI Listing |
Environ Sci Technol
September 2025
School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, P.R. China.
Volatile organic compounds (VOCs) significantly impact air quality as photochemical smog precursors and health hazards. Catalytic oxidation is a leading VOC abatement method but suffers from catalyst deactivation due to metal sintering and competitive adsorption in complex mixtures. Strong metal-support interactions (SMSIs) provide atomic level control of interfacial electronic and geometric structures.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
College of Polymer Science and Engineering, State Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu, 610065, China.
Pt-based catalysts exhibit extraordinary potential in reverse-water gas shift (RWGS) reactions, but often fail to possess a high reaction rate and high durability at the same time under high temperature. Herein, we designed a SiO-induced loose CeO as an effective capture for Pt atoms. The abundant surface O vacancies in the loose CeO can trigger significant electron transfer from Pt to CeO and play a crucial role in stabilizing Pt atoms, therefore, largely improving its thermal stability.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Henan Agricultural University, Zhengzhou, 450002, China.
A dual-mode aptasensor was engineered for aflatoxin B (AFB) detection by functional integration of peroxidase-mimetic Au@CeO core-shell nanostructures with emissive carbon dots (CDs). The Au@CeO nanocomposite, synthesized via spontaneous redox reaction, exhibited enhanced peroxidase-like activity due to abundant Ce/oxygen vacancies facilitating hydroxyl radical generation. The aptasensor utilizes a competitive binding mechanism, where AFB competed with immobilized Au@CeO-CDs-Apt1 probes for binding sites, resulting in inversely proportional colorimetric and fluorescent signals.
View Article and Find Full Text PDFJ Mater Chem B
September 2025
Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 225000, China.
Implant-related infections (IRIs) pose a major challenge in orthopedic applications due to the persistence of biofilms, which are highly resistant to conventional antibiotics. This study introduces oxygen vacancy-engineered Zn-Fe spinel nanoparticles as microwave-responsive antibacterial agents. The oxygen vacancies in the spinel structure enhance reactive oxygen species (ROS) generation under microwave irradiation, providing a dual-mode antibacterial mechanism of thermal and oxidative stress.
View Article and Find Full Text PDFSmall Methods
September 2025
School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea.
Constructing robust electrocatalysts and shedding light on the processes of surface reconstruction is crucial for sustained hydrogen production and a deeper understanding of catalytic behavior. Here, a novel ZIF-67-derived lanthanum- and phosphorus-co-doped CoO catalyst (La, P-CoO) has been reported. X-ray absorption spectroscopy (XAS) confirms that the La and P co-doping reduces the coordination number (CN), improves oxygen vacancies (O), and leads to lattice distortion.
View Article and Find Full Text PDF