98%
921
2 minutes
20
Although WRKY transcription factors play crucial roles in plant responses to high-temperature stress, little is known about Group IIb WRKY family members. Here, we identified the WRKY-IIb protein PlWRKY47 from herbaceous peony (Paeonia lactiflora Pall.), which functioned as a nuclear-localized transcriptional activator. The expression level of PlWRKY47 was positively correlated with high-temperature tolerance. Silencing of PlWRKY47 in P. lactiflora resulted in the decreased tolerance to high-temperature stress by accumulating reactive oxygen species (ROS). Overexpression of PlWRKY47 improved plant high-temperature tolerance through decreasing ROS accumulation. Moreover, PlWRKY47 directly bound to the promoter of cytosolic glyceraldehyde-3-phosphate dehydrogenase 2 (PlGAPC2) gene and activated its transcription. PlGAPC2 was also positively regulated high-temperature tolerance in P. lactiflora by increasing NAD content to inhibit ROS generation. Additionally, PlWRKY47 physically interacted with itself to form a homodimer, and PlWRKY47 could also interact with one Group IIb WRKY family member PlWRKY72 to form a heterodimer, they all promoted PlWRKY47 to bind to and activate PlGAPC2. These data support that the PlWRKY47-PlWRKY47 homodimer and PlWRKY72-PlWRKY47 heterodimer can directly activate PlGAPC2 expression to improve high-temperature tolerance by inhibiting ROS generation in P. lactiflora. These results will provide important insights into the plant high-temperature stress response by WRKY-IIb transcription factors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/pce.15143 | DOI Listing |
J Dairy Sci
September 2025
Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China. Electronic address:
Heat stress poses a major threat to dairy cattle productivity, particularly in high-producing Holstein cows. To identify robust biomarkers of thermotolerance, we employed an integrative strategy combining physiological phenotyping, blood metabolite profiling, and transcriptomic analysis. A total of 120 lactating Holstein cows were evaluated under natural summer heat conditions using rectal temperature, respiratory rate, salivation index, serum HSP70, cortisol, potassium levels, and milk production.
View Article and Find Full Text PDFMar Environ Res
September 2025
Department of Ocean Integrated Science, Chonnam National University, 59626, Yeosu, Republic of Korea. Electronic address:
Marine heatwaves (MHWs) are increasing in frequency and intensity worldwide, significantly impacting marine ecosystems. However, studies on phytoplankton community changes in coastal waters under such conditions remain. In the summer of 2024, an extreme high-temperature event (>28 °C) occurred in the southern coastal waters of Korea, providing an opportunity to investigate phytoplankton community dynamics under thermal stress.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Laboratory of Advanced Materials, Aqueous Battery Center, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Shanghai Wusong Laboratory of Materials Science, College of Smart Materials and Future Energy, Fudan University, Shanghai 200433, China.
Potassium-ion batteries (PIBs) have emerged as an appealing, sustainable and cost-effective candidate for grid-scale energy storage due to abundant K resources and reversible K de/intercalation in graphite anodes (KC, 279 mAh g). However, their practical operation suffers from sluggish kinetics and severe capacity deterioration in traditional carbonate electrolytes. Herein, ethoxy (pentafluoro) cyclotriphosphazene (PFPN) and methyl (2,2,2-trifluoroethyl) carbonate (FEMC) are introduced as cosolvents to rejuvenate conventionally low-concentration (1 M) 1,2-dimethoxyethane (DME)-based electrolytes.
View Article and Find Full Text PDFFront Public Health
September 2025
Department of Family and Community Medicine, Penn State University College of Medicine, Hershey, PA, United States.
Background: The World Health Organization recommends at-home management of mild COVID-19. While our preliminary evaluation provided evidence for saline nasal irrigation (SNI) and gargling in COVID-19, an update and risk-benefit assessment for self-care in Omicron infection is warranted, from treatment and preparedness perspectives, as new SARS-CoV-2 variants continuously emerge, while symptoms overlap with those of common colds and other upper respiratory tract infections.
Methods: Systematic literature searches for preclinical and clinical studies involving Omicron infection and saline, bias assessment, and review of outcomes (benefits, risks).
AoB Plants
October 2025
Instituto de Ecología, Departamento de Ecología de la Biodiversidad, Universidad Nacional Autónoma de México, Campus Hermosillo, Luis Donaldo Colosio s/n, Los Arcos, Hermosillo, Sonora CP 83250, México.
To cope with heat and water stress, evergreen and deciduous species from hot and arid deserts should adjust their stomatal conductance ( ) and leaf water potential (Ψ) regulation in response to changes in soil water availability, high temperatures, and vapour pressure deficits (VPDs). To test whether phenology induces changes in -Ψ coordination, we tested for associations between 14 leaf traits involved in leaf economics, hydraulics, and stomatal regulation, including minimum seasonal water potential (Ψ) and maximum ( ), turgor loss point (Ψ), osmotic potential (Ψ), leaf area (LA), and specific leaf area (SLA), across 12 tree species from the Sonoran Desert with contrasting phenology. We found that foliar phenology, leaf hydraulics, and leaf economic traits are coordinated across species and organized along the axis of physiological efficiency and safety in response to temperature and VPD.
View Article and Find Full Text PDF