PI gain tuning for pressure-based MFCs with Gaussian mixture model.

Sci Rep

HORIBA STEC, Co., Ltd., Research & Development Division, Kyoto, 601-8116, Japan.

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A vast number of mass flow controllers (MFCs) are used in semiconductor industry. For the stable supply, an efficient production method of MFC is required. The gain tuning of the proportional-integral (PI) control to realize a setting flow rate is essential for efficient mass production. The gains are tuned to meet the specifications required for evaluation indices of response time and overshoot amount in a step response waveform. The tuning is complicated especially for the case of pressure-based MFCs. In this paper, we propose a simple method for the PI gain tuning using the Gaussian mixture model (GMM) and the direct inverse analysis applicable to the pressure-based MFCs' production. The relationship between the gains and evaluation indices for a standard unit of the MFC is modeled as the GMM. The direct inverse analysis calculates the difference between the standard and a test unit. Under the assumption that the difference can be compensated by a simple shift, gains likely to meet the specifications for the test unit are searched. We applied the method to seven test units. The result showed that the gains of all the test units were tuned within only a few iterations whose numbers were much less than the conventional manual tuning method, and there was no untunable unit.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11375100PMC
http://dx.doi.org/10.1038/s41598-024-71261-1DOI Listing

Publication Analysis

Top Keywords

gain tuning
12
pressure-based mfcs
8
gaussian mixture
8
mixture model
8
meet specifications
8
evaluation indices
8
gmm direct
8
direct inverse
8
inverse analysis
8
test unit
8

Similar Publications

Anatomical pathways and functional implications of the rodent auditory system-basal ganglia interconnectivity.

Front Behav Neurosci

August 2025

Department of Sensory and Cognitive Physiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.

Sound influences motor functions and sound perception is conversely modulated by locomotion. Accumulating evidence supports an interconnection between the auditory system and the basal ganglia (BG), which has functional implications on the interaction between the two systems. Substantial evidence now supports auditory cortex and auditory thalamus inputs to the tri-laminar region of the tail of the striatum (tTS) in rodents.

View Article and Find Full Text PDF

Superinfection exclusion (SIE) is a finely tuned virus-virus interaction mechanism closely linked to the viral infection cycle. However, the mechanistic basis of SIE remains incompletely understood in plant viruses, particularly among negative-sense, single-stranded RNA viruses. In this study, we first describe the development of an efficient reverse genetics system for the plant nucleorhabdovirus Physostegia chlorotic mottle virus (PhCMoV) by codon optimisation of the large polymerase coding sequence.

View Article and Find Full Text PDF

Stacking desirable haplotypes across the genome to develop superior genotypes has been implemented in several crop species. A major challenge in Optimal Haplotype Selection is identifying a set of parents that collectively contain all desirable haplotypes, a complex combinatorial problem with countless possibilities. In this study, we evaluated the performance of metaheuristic search algorithms (MSAs)-genetic algorithm (GA), differential evolution (DE), particle swarm optimisation (PSO), and simulated annealing (SA) for optimising parent selection under two genotype building (GB) objectives: Optimal Haplotype Selection (OHS) and Optimal Population Value (OPV).

View Article and Find Full Text PDF

Manipulating magnetism in two-dimensional (2D) van der Waals (vdW) materials arouses considerable and ongoing interest in fundamental physics and potential applications in next-generation spintronics. Here, we have investigated the underlying electronic structures of bulk vdW magnets CrTe2 and NaCrTe2, by carrying out high-resolution angle-resolved photoemission spectroscopy (ARPES) studies and first-principles calculations. In CrTe2, strong out-of-plane band dispersions and metallic Fermi surface are observed, accompanied by temperature-dependent ferromagnetic (FM) energy gain behavior which directly confirms its itinerant origin.

View Article and Find Full Text PDF

Purpose: The recent advancements of retrieval-augmented generation (RAG) and large language models (LLMs) have revolutionized the extraction of real-world evidence from unstructured electronic health records (EHRs) in oncology. This study aims to enhance RAG's effectiveness by implementing a retriever encoder specifically designed for oncology EHRs, with the goal of improving the precision and relevance of retrieved clinical notes for oncology-related queries.

Methods: Our model was pretrained with more than six million oncology notes from 209,135 patients at City of Hope.

View Article and Find Full Text PDF