98%
921
2 minutes
20
Manipulating magnetism in two-dimensional (2D) van der Waals (vdW) materials arouses considerable and ongoing interest in fundamental physics and potential applications in next-generation spintronics. Here, we have investigated the underlying electronic structures of bulk vdW magnets CrTe2 and NaCrTe2, by carrying out high-resolution angle-resolved photoemission spectroscopy (ARPES) studies and first-principles calculations. In CrTe2, strong out-of-plane band dispersions and metallic Fermi surface are observed, accompanied by temperature-dependent ferromagnetic (FM) energy gain behavior which directly confirms its itinerant origin. In sharp contrast, NaCrTe2 turns into an A-type antiferromagnetic (AFM) semiconductor in calculations and transport measurements. Remarkably, robust ferromagnetisminherited from CrTe2 is distinguished on the polar surface of AFM NaCrTe2. Our results not only reveal the itinerant FM mechanism of CrTe2, but alsodemonstrate that chemical doping is a powerful tuning knob to manipulate the properties of 2D magnetic material. Moreover, we establish NaCrTe2 as an excellent AFM semiconductor platform with robust surface ferromagnetism, which is promising in practical applications. .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/ae03fd | DOI Listing |
Nano Lett
September 2025
Department of Physics and Astronomy, University of Nebraska─Lincoln, Lincoln, Nebraska 68588, United States.
In this study, using a set of scanning probe microscopy techniques, we investigate the electronic properties of the domain walls in the layered ferroelectric semiconductor of the transition metal oxide dihalide family, NbOI. Although the uniaxial ferroelectricity of NbOI allows only 180° domain walls, the pristine 2D flakes, where polarization is aligned in-plane, typically exhibit a variety of as-grown domain patterns outlined by the electrically neutral and charged domain walls. The electrically biased probing tip can modify the as-grown domain structures.
View Article and Find Full Text PDFJ Phys Condens Matter
September 2025
Wuhan University, Wuhan University, Wuhan, 430072, CHINA.
Manipulating magnetism in two-dimensional (2D) van der Waals (vdW) materials arouses considerable and ongoing interest in fundamental physics and potential applications in next-generation spintronics. Here, we have investigated the underlying electronic structures of bulk vdW magnets CrTe2 and NaCrTe2, by carrying out high-resolution angle-resolved photoemission spectroscopy (ARPES) studies and first-principles calculations. In CrTe2, strong out-of-plane band dispersions and metallic Fermi surface are observed, accompanied by temperature-dependent ferromagnetic (FM) energy gain behavior which directly confirms its itinerant origin.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Department of Physics, University of Sargodha, 40100 Sargodha, Pakistan.
The BaGdRuO double perovskite oxide demonstrates intriguing behavior, arising from competing antiferromagnetic (AFM) and ferrimagnetic (FiM) phases. Under the GGA++SOC scheme, the system exhibits an AFM ground state with a very small energy difference of -11.39 meV compared to the FiM one.
View Article and Find Full Text PDFNanotechnology
August 2025
Departmento de Fisica, UFMG, Av Antonio Carlos 6627, Belo Horizonte, 31270-901, BRAZIL.
Two-dimensional transition metal dichalcogenide (TMD) alloys have emerged as a versatile platform for electronic, optoelectronic, and quantum applications due to their tunable crystal structure and unique electronic properties. In this study, we investigate the influence of atomic composition on the structural, electronic, and optical properties of the Mo1-xWxSe2 alloy, combining experimental and theoretical approaches. Samples with different Mo and W ratios were synthesized and characterized using Raman and photoluminescence (PL) spectroscopies, and atomic force microscopy (AFM).
View Article and Find Full Text PDFMicromachines (Basel)
August 2025
Instute of Semiconductor Technology, Technische Universität Braunschweig, 38106 Braunschweig, Germany.
In this study we report on the structural, mechanical, and electrical characterization of different structures of vertically aligned zinc oxide (ZnO) nanowires (NWs) synthesized using hydrothermal methods. By optimizing the growth conditions, scanning electron microscopy (SEM) micrographs show that the ZnO NWs could reach an astounding 51.9 ± 0.
View Article and Find Full Text PDF