98%
921
2 minutes
20
Despite the well-documentation of the effects of straw returning on soil structural stability and fertility, its long-term impacts on profile aggregate size composition and organic carbon (OC) fractions remain poorly investigated. To address this research gap, the present nine-year field trial explored the co-effects of straw returning and chemical fertilization on soil total OC (TOC), dissolved OC (DOC), resistant OC (ROC), easily oxidative OC (EOC), as well as soil aggregate size composition of different soil depths (0-15, 15-30, and 30-50 cm) in a paddy field, East China. To do so, four different treatments were set up, including no straw returning plus no fertilization (CK), conventional fertilization (F), straw returning plus conventional fertilization (SF), and straw returning plus 80 % conventional fertilization (SDF). Our findings revealed that the >2 mm aggregates were dominant in all treatments, particularly in SF and SDF 0-30 cm soil layers ranging from 62 to 70 % (P < 0.05). The highest TOC contents happened in SF topsoil 0.25-2 mm aggregates (0-30 cm; 21.4 g/kg), 44.4 and 21.1 % higher than the CK and F treatments, respectively (P < 0.05). Regardless of soil depth, the highest EOC contents occurred in SDF 0.25-2 mm aggregates varying from 2.36 ± 0.1 to 7.7 ± 0.57 g/kg (P < 0.05). Further, the highest ROC and DOC contents took place in SF 0.25-2 mm and SF > 2 mm aggregates, respectively, differing from 3.86 to 15.8 g/kg and 250-413 mg/kg, respectively (P < 0.05). It is also worth noting that SF had the highest crop productivity with the seasonal yields of 3.51 and 13.5 t ha for rapeseed and rice, respectively (P < 0.05). Altogether, our findings suggested that long-term straw returning coupled with conventional (SF) or 80 % conventional (SDF) fertilization are the most efficient schemes for the formation/stability of soil aggregates, as well as for the accumulation of different soil OC fractions and crop productivity in the Chaohu Lake agricultural soils of East China.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11214486 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e32392 | DOI Listing |
Bull Environ Contam Toxicol
September 2025
Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
Cadmium (Cd) pollution in rice agroecosystems has become a pressing worldwide environmental challenge. Straw return leads to Cd re-entering the soil, yet the impact of straw removal (SR) on Cd mobility and bioavailability within this system remains unclear. We implemented a four-season field study to evaluate how different SR intensities (NSR: no rice straw was removed; HSR: half of the rice straw was removed; TSR: all the rice straw was removed) influence Cd availability in this system.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Institute of Biotechnology, Inner Mongolia Tongliao Agricultural and Animal Husbandry Academy, Tongliao, China.
Introduction: Straw return combined with rational nitrogen (N) fertilization plays a critical role in coordinating the transformation of soil organic carbon and nitrogen availability, thereby improving nitrogen use efficiency (NUE), crop yield, and soil fertility. However, the dynamics of soil carbon and nitrogen fractions under straw return with varying N inputs, and their specific contributions to NUE and yield, remain unclear.
Methods: A three-year split-plot field experiment was conducted in the Tumochuan Plain Irrigation District.
Ultrason Sonochem
September 2025
College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China. Electronic address:
Addressing the issues of slow decomposition and low nutrient release efficiency associated with traditional straw returning, this study innovatively applied ultrasound-assisted centrifugal separation technology to prepare submicron/nano-straw particles and systematically conducted a multi-scale investigation from microscopic to macroscopic levels. The core finding reveals that when the particle size reaches the 1 μm threshold, ultrasonic cavitation vigorously disrupts the straw structure, leading to efficient lignin removal (77.45 %) and a significant reduction in cellulose crystallinity, thereby fundamentally enhancing the degradation rate.
View Article and Find Full Text PDFJ Environ Manage
September 2025
Institute of Biological & Environmental Sciences, University of Aberdeen, 23 St. Machar Drive., Aberdeen, AB24 3UU, UK.
Integration of diverse fertilisation strategies with water-saving irrigation techniques presents a promising sustainable agricultural practice, offering the potential to reduce greenhouse gases (GHGs) emissions, enhance carbon sequestration and boost crop yields. However, existing research on the influence of soil microorganisms on biogeochemical processes of GHGs is limited. Herein, we explored the microbial mechanisms influencing GHGs emissions through a 3-year field experiment and metagenomic sequencing conducted in southeastern China.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
August 2025
Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China.
White slurry layer of albic soil has low fertility and poor nutrient availability. Organic material return to fields is a primary agricultural management practice for enhancing soil fertility. We examined the variations of soil nitrogen, phosphorus and potassium nutrient contents and pH of the topsoil layer (0-15 cm) and subsoil (15-35 cm) layers of albic soil under different treatments, including deep tillage at 35 cm without organic materials (T), straw deep mixing at 35 cm (T+S), organic fertilizer deep mixing at 35 cm (T+M), combined straw and organic fertilizer deep mixing at 35 cm (T+M+S), and conventional tillage at 15 cm without organic materials as the control (CK).
View Article and Find Full Text PDF