Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Atherosclerosis (AS) is a common cause of coronary heart disease and stroke. The delivery of exogenous HS and in situ production of O within atherosclerotic plaques can help suppress inflammatory cell infiltration and alleviate disease progression. However, the uncontrolled release of gas donors hinders achieving effective drug concentrations and causes toxic effects. Herein, diallyl trisulfide (DATS)-loaded metal-organic cage (MOC)-68-doped MnO nanoparticles are developed as a microenvironment-responsive nanodrug with the capacity for the in situ co-delivery of HS and O to inflammatory cells within plaques. This nanomedicine exhibited excellent monodispersity and stability and protected DATS from degradation in the circulation. In vitro studies showed that the nanomedicine reduced macrophage polarization toward an inflammatory phenotype and inhibited the formation of foam cells, while suppressing the expression of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and interleukin-1β. In a mouse model of ApoE genotype, the nanomedicine reduces the plaque burden, inflammatory infiltration, and hypoxic conditions within the plaques. Furthermore, the treatment process and therapeutic effects can be monitored by magnetic resonance image (MRI), in real time upon Mn release from the acidic- and HO- microenvironment-responsive MnO nanoparticles. The DATS-loaded MOC-68-doped MnO-based nanodrug holds great promise as a novel theranostic platform for AS.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202402673DOI Listing

Publication Analysis

Top Keywords

mno nanoparticles
8
codelivery dual
4
dual gases
4
gases metal-organic
4
metal-organic supramolecular
4
supramolecular cage-based
4
cage-based microenvironment-responsive
4
nanomedicine
4
microenvironment-responsive nanomedicine
4
nanomedicine atherosclerosis
4

Similar Publications

Image-guided surgery plays a critical role in improving the cancer patient prognosis. However, current clinical probes are often single-modal with "always-on" signals, failing to provide complementary and precise guidance across all perioperative phases. To tackle this hurdle, we develop a biomarker-activatable, multimodal nanoprobe - - based on redox-mediated manganese valence switching for tumor-specific, perioperative image-guided surgery.

View Article and Find Full Text PDF

Facile synthesis of a near-infrared fluorophore based on Dibenzo[def,mno]chrysene-6,12-dione acceptor for dual applications in organic light-emitting diode and cellular imaging.

J Colloid Interface Sci

August 2025

State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, PR China.. Electronic address:

Near-infrared (NIR) fluorophores, characterized by emission wavelengths exceeding 650 nm, have garnered significant attention due to their diverse and advanced applications in fields such as organic light-emitting diodes (OLEDs), photomicrography, anti-counterfeiting, in vivo/vitro bioimaging, as well as theranostics. In this study, we report the rational design and facile synthesis of a novel NIR fluorescent molecule, AA-TPA, strategically constructed by integrating two twisted triphenylamine (TPA) electron-donating groups with a dibenzo[def,mno]chrysene-6,12-dione (AA) electron-accepting unit. The pronounced donor-acceptor interaction within the non-planar and rigid molecular architecture facilitates NIR emission with a peak at 667 nm, while preserving efficient luminescence with a photoluminescence quantum yield of 46 % in a doped film.

View Article and Find Full Text PDF

Sodium borohydride (NaBH) is considered as an outstanding hydrogen generation and storage material, whereas its widespread commercial application remains hindered by prohibitively high production cost and unsatisfied yield in the current production process. Electrochemical metaborate reduction reaction is a promising method to realize the low-cost and effective NaBH production, where the *H generation and the inhibition of HH coupling are critical but still remain challenging for suppressing competing hydrogen evolution reaction (HER). Herein, a core-shell structure with manganese oxide as a core and manganese single atom coordinated by nitrogen on the carbon substrate as a shell (MnO@Mn-N-C) was synthesized, where Mn-N-C enabled to boost water dissociation and electron donating as well as suppress HH coupling, thereby enhancing directed hydrogenation of reaction intermediate to generate NaBH.

View Article and Find Full Text PDF

Radiotherapy (RT) has great potential on activating antitumor immunity for combination therapy, yet this effect is limited by immunosuppressive tumor microenvironment (TME) and the potential toxicity in immune cells from high-dose radiation. Herein, we developed engineered nanoparticles (NPs) (CVs@MgMn) composed of genetically edited cellular vesicles (CVs), MnO and MgCO for enhanced radioimmunotherapy by remolding TME and activating the stimulator of the interferon genes (STING) pathway. In the TME, the efficiently enriched CVs@MgMn were decomposed to generate hydroxyl (‧OH) and oxygen (O) for radiosensitization.

View Article and Find Full Text PDF

Rapid screening of foodborne pathogens is critical for food safety, yet current detection techniques often suffer from low efficiency and complexity. In this study, we developed a sliding microfluidic colorimetric biosensor for the fast, sensitive, and multiplex detection of . First, the target bacteria were specifically captured by antibody-functionalized magnetic nanoparticles in the microfluidic chip, forming magnetic bead-bacteria complexes.

View Article and Find Full Text PDF