98%
921
2 minutes
20
Background: Rhizomucor miehei (RM) lipase is a regioselective lipase widely used in food, pharmaceutical and biofuel industries. However, the high cost and low purity of the commercial RM lipase limit its industrial applications. Therefore, it is necessary to develop cost-effective strategies for large-scale preparation of this lipase. The present study explored the high-level expression of RM lipase using superfolder green fluorescent protein (sfGFP)-mediated Escherichia coli secretion system.
Results: The sfGFP mutant was fused to the C-terminus of RM lipase to mediate its secretion expression. The yield of the fusion protein reached approximately 5.1 g/L with high-density fermentation in 5-L fermentors. Unlike conventional secretion expression methods, only a small portion of the target protein was secreted into the cell culture while majority of the fusion protein was still remained in the cytoplasm. However, in contrast to intracellular expression, the target protein in the cytoplasm could be transported efficiently to the supernatant through a simple washing step with equal volume of phosphate saline (PBS), without causing cell disruption. Hence, the approach facilitated the downstream purification step of the recombinant RM lipase. Moreover, contamination or decline of the engineered strain and degradation or deactivation of the target enzyme can be detected efficiently because they exhibited bright green fluorescence. Next, the target protein was immobilized with anion-exchange and macropore resins. Diethylaminoethyl sepharose (DEAE), a weak-basic anion-exchange resin, exhibited the highest bind capacity but inhibited the activity of RM lipase dramatically. On the contrary, RM lipase fixed with macropore resin D101 demonstrated the highest specific activity. Although immobilization with D101 didn't improve the activity of the enzyme, the thermostability of the immobilized enzyme elevated significantly. The immobilized RM lipase retained approximately 90% of its activity after 3-h incubation at 80 °C. Therefore, D101 was chosen as the supporting material of the target protein.
Conclusion: The present study established a highly efficient strategy for large-scale preparation of RM lipase. This innovative technique not only provides high-purity RM lipase at a low cost but also has great potential as a platform for the preparation of lipases in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11129466 | PMC |
http://dx.doi.org/10.1186/s12934-024-02432-y | DOI Listing |
Int Microbiol
September 2025
Department of Microbiology, The University of Burdwan, Bardhaman, West Bengal, 713104, India.
Biofilm formation and other virulence phenotypes under quorum sensing regulation play a vital role in the pathogenicity of Aeromonas hydrophila, triggering the emergence of multi-drug resistance (MDR) which increases fish mortality, environmental issues, and economic loss in aquaculture, necessitating the discovery of novel drugs to bypass standard antibiotics. Here, quorum quenching (QQ) may be a sustainable anti-virulent approach. β-Lactamase enzyme obtained from Chromohalobacter sp.
View Article and Find Full Text PDFAppl Biochem Biotechnol
September 2025
Programa de Engenharia Química/COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, 21941-972, Rio de Janeiro, Brazil.
Polymer particles, including synthetic polymers such as poly(methyl methacrylate) (PMMA) and poly(styrene-co-divinylbenzene) (P(S-co-DVB)) beads, have been widely used as enzymatic supports and drug carriers. In this sense, it is important to understand the stabilization or degradation of such polymer matrices under specific chemical and enzymatic media. For this reason, the present work aims to evaluate the current status and prospects of treatments of PMMA and P(S-co-DVB) particles intended for biotechnological and biomedical applications under basic, acidic, and enzymatic environments.
View Article and Find Full Text PDFFront Genet
August 2025
Laboratory of Cellular Biochemistry and Molecular Biology, CRIBENS, Catholic University of the Sacred Heart, Milan, Italy.
Neutral Lipid Storage Disease with Myopathy (NLSDM) is a rare lipid metabolism disorder caused by impaired Adipose Triglyceride Lipase (ATGL) activity, leading to neutral lipid accumulation in various tissues. It typically manifests with progressive skeletal myopathy, with an onset of around 35 years. In addition, some patients develop cardiomyopathy and liver dysfunction.
View Article and Find Full Text PDFAnim Nutr
September 2025
National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
The purpose of this study was to explore the effects of changing the digestible energy (DE) level of the diet on the growth performance, intestinal function, carcass traits, meat quality and blood biochemical indices of Ningxiang pigs, and to comprehensively identify the lipid molecules in the abdominal fat of Ningxiang pigs through lipidomics technology to evaluate the pork quality. The experiment selected 225 castrated Ningxiang pigs (47.64 ± 0.
View Article and Find Full Text PDFRSC Adv
August 2025
Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University Taipei 110301 Taiwan
This study represents the first report on the secondary metabolites from the soft coral . Nine terpenoids (1-9) were isolated by antidiabetic-guided isolation, including a new xeniaphyllane-type diterpenoid (Sclerohumin O, 1) and a new norcaryophyllene-type sesquiterpenoid (Norsclerohumin P, 6). These compounds feature a distinctive 4/9-fused ring system, which was the first isolated in the genus.
View Article and Find Full Text PDF