Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Biofilm formation and other virulence phenotypes under quorum sensing regulation play a vital role in the pathogenicity of Aeromonas hydrophila, triggering the emergence of multi-drug resistance (MDR) which increases fish mortality, environmental issues, and economic loss in aquaculture, necessitating the discovery of novel drugs to bypass standard antibiotics. Here, quorum quenching (QQ) may be a sustainable anti-virulent approach. β-Lactamase enzyme obtained from Chromohalobacter sp. strain D23 restricted violacein pigmentation in Chromobacterium violaceum CV026 by degrading C4-homoserine lactone (C4-HSL) and C6-HSL up to 70% (P < 0.0001). HPLC study also revealed > 73% enzymatic breakdown of both C4-HSL and C6-HSL within 2 h. Crude β-lactamase also hampered biofilm formation of A. hydrophila by reducing total biomass (> 66%, P < 0.001) and cellular viability (62%, P < 0.0001) without affecting planktonic growth. QS-mediated other virulence factors of A. hydrophila, like hemolysin, serine protease, exopolysaccharides, metalloprotease, and lipase activities, were also significantly inhibited (P < 0.0001). Draft genome size of strain D23 was 3.6 mb, having 64.01% G + C content. Annotation revealed the presence of a MBL (metallo-beta-lactamase)-fold metallo-hydrolase enzyme. Multiple sequence alignment indicated the presence of the conserved HXHXDH domain. Pairwise alignment showed 65% ≤ sequence identity with known marine lactonase enzymes. The molecular docking study revealed moderate binding affinity of β-lactamase to C4-HSL and C6-HSL (- 5.3 kcal/mol). Thus, the present study shows the potent QQ activity of β-lactamase of strain D23 against MDR A. hydrophila, targeting their pathogenesis without necessarily killing them, which can minimize the use of antibiotics in aquaculture and also suggests possible biomedical use. This study also highlights the usefulness of less explored marine bacteria as a potent source of bioactive enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10123-025-00705-zDOI Listing

Publication Analysis

Top Keywords

quorum quenching
8
enzyme chromohalobacter
8
chromohalobacter strain
8
strain d23
8
aeromonas hydrophila
8
biofilm formation
8
c4-hsl c6-hsl
8
genomic insights
4
insights determination
4
determination quorum
4

Similar Publications

Population-level bistability in quorum sensing.

mBio

September 2025

Department of Microbiology, Oregon State University, Corvallis, Oregon, USA.

Quorum sensing (QS) is a widespread signaling mechanism in bacteria that coordinates collective behaviors according to population density. A foundational assumption in this field is that QS functions as a gene expression switch that synchronizes responses at the population level. While some studies indeed report homogeneous on/off transitions, others report heterogeneity at the cellular level, challenging the canonical view.

View Article and Find Full Text PDF

Antibacterial and antiviral properties of punicalagin (Review).

Med Int (Lond)

August 2025

Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China.

Punicalagin, a polyphenolic compound extracted from pomegranate peel, has received increasing attention in recent years due to its antibacterial and antiviral properties. Punicalagin is capable of inhibiting bacterial growth at sub-inhibitory concentrations by affecting cell membrane formation, disrupting membrane integrity, altering cell permeability, affecting efflux pumps, interfering with quorum sensing and influencing virulence factors. Additionally, punicalagin inhibits viruses by modulating enzyme activity, interacting with viral surface proteins, affecting gene expression, blocking viral attachment, disrupting virus receptor interaction and inhibiting viral replication.

View Article and Find Full Text PDF

Thunb is endogenous to Southeast Asia and traditionally used for the treatment of bacterial and viral infections. Previous studies reported various pharmacological activities, including cytotoxic activity. The aim of this work was to identify phytoconstituents of the ethanolic extract of aerial parts using extensive 1D- and 2D-NMR analysis and HR-MS.

View Article and Find Full Text PDF

Combating the post-antibiotic era crisis: antimicrobial peptide/peptidomimetic-integrated combination therapies and delivery systems.

J Mater Chem B

September 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China.

Globally, new antibiotic development lags behind the rapid evolution of antibiotic-resistant bacteria. Given the extensive research and development cycles, high costs, and risks associated with new pharmaceuticals, exploring alternatives to conventional antibiotics and enhancing their efficacy and safety is a promising strategy for addressing challenges in the post-antibiotic era. Previous studies have shown that antimicrobial peptides/peptidomimetics (AMPs) primarily use a membrane-disruption mechanism distinct from conventional antibiotics to exert bactericidal effects.

View Article and Find Full Text PDF

Bacillus drives functional states in synthetic plant root bacterial communities.

Genome Biol

September 2025

Department of Biology, Plant-Microbe Interactions, Science for Life, Utrecht University, Utrecht, 3584CH, The Netherlands.

Background: Plant roots release root exudates to attract microbes that form root communities, which in turn promote plant health and growth. Root community assembly arises from millions of interactions between microbes and the plant, leading to robust and stable microbial networks. To manage the complexity of natural root microbiomes for research purposes, scientists have developed reductionist approaches using synthetic microbial inocula (SynComs).

View Article and Find Full Text PDF