Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Long non-coding RNA (LncRNA) as an emerging tumor biomarker plays a key factor in the early diagnosis of cancer. Herein, an innovative signal-switchable photoelectrochemical (PEC) biosensor based on ZrO@CuO bimetallic oxides and T7 Exo-assisted signal amplification is reported for the ultrasensitive and selective detection of lncRNA (HOX gene antisense intergenic RNA, HOTAIR) in cancer cells. Firstly, MOFs-derived TiO nanodisks as an excellent photoactive material show an anodic background signal. When target lncRNA exists, the abundant auxiliary DNA1 is freed from T7 Exo-assisted cycle signal amplification, and then competitively hybridizes with auxiliary DNA2 on the electrode. Subsequently, bimetallic MOFs-derived ZrO@CuO octahedra with a high specific surface area and porous structure are introduced into TiO nanodisks-modified biosensor, which appears a cathodic photocurrent and achieves a switchable signal. The developed signal-switchable PEC biosensor shows ultrasensitive detection of lncRNA HOTAIR with a detection limit of 0.12 fM, and can eliminate the false interference. Importantly, the established PEC biosensor has good correlation with RT-qPCR analysis (P < 0.05) for the quantification of lncRNA HOTAIR in cancer cells, which has great potential application for biomarker detection in the early diagnosis of cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2024.125878DOI Listing

Publication Analysis

Top Keywords

pec biosensor
12
signal-switchable photoelectrochemical
8
biosensor ultrasensitive
8
ultrasensitive detection
8
long non-coding
8
non-coding rna
8
cancer cells
8
signal amplification
8
detection lncrna
8
biosensor
5

Similar Publications

Pax-5a gene, as a nucleic acid biomarker closely associated with B-cell acute lymphoblastic leukemia (B-ALL), holds significant potential for early disease diagnosis. In this study, we developed a highly accurate and efficient "on-super on-off" photoelectrochemical (PEC) biosensor based on a dual-photoelectrode heterojunction system integrated with a multisphere cascade DNA amplification strategy. The designed heterojunction dual-photoelectrode platform, comprising a InO/CdS photoanode (on state) and an in situ-formed MIL-68(In)/InO (MIO) photocathode, effectively extends the electron-hole transport pathway, enhances photogenerated charge separation, and produces high-amplitude signal output (super on state), thereby providing a robust baseline for signal transduction.

View Article and Find Full Text PDF

A novel ternary synergistic photoelectrochemical (PEC) probe is presented utilizing metal-organic framework (MOF)-templated Pd/CdS@CoS nanocages for sensing chlorpyrifos (CPF) using chronoamperometry under an applied bias of - 65 mV with 465-nm LED illumination. Derived from ZIF-67 via in situ sulfidation, the hollow nanocage architecture integrated CdS nanoparticles with CoS to form a direct Z-scheme heterojunction, while decorating Pd quantum dots (QDs) created a Schottky barrier, implementing a crucial dual charge-transfer enhancement strategy. Density functional theory (DFT) simulations confirmed a 0.

View Article and Find Full Text PDF

Polarity-Switching Photoelectrochemical Biosensor Enabled by Metal/Semiconductor Nanostructures for Ultrasensitive MicroRNA Detection.

Langmuir

September 2025

Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China.

Developing efficient and accurate photoelectrochemical (PEC) sensing strategies to eliminate potential false positive or negative signals is crucial for practical applications. In this work, we report a PEC sensing strategy based on CuO nanoparticle-induced photocurrent polarity switching in a heterostructure of InP/ZnS quantum dots (QDs) combined with PdPt nanospheres (InP/ZnS@PdPt). The PdPt nanospheres not only provide versatile support for loading InP/ZnS QDs but also enable a 10-fold enhancement in the PEC activity of the InP/ZnS@PdPt compared to InP/ZnS QDs, attributed to the combined influence of localized surface plasmon resonance and the Schottky junction.

View Article and Find Full Text PDF

Dual-Probe Strategy-Enabled Multiplex Photoelectrochemical Sensor for Highly Sensitive Screening of Diabetes and Related Complications.

Anal Chem

September 2025

Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, P. R. China.

Photoelectrochemical (PEC) biosensing has emerged as a vital tool in disease surveillance and therapeutic monitoring. However, most current PEC platforms are constrained to single biomarker detection, limiting their utility in comprehensive disease management. In this study, we report the development of a dual-target PEC biosensor by integrating silane molecules and β-cyclodextrin (β-CD) with carbon nitride materials, specifically designed for monitoring diabetes and its associated complication, uremia.

View Article and Find Full Text PDF

Grain-boundary-rich high-entropy selenide combining with hollow cerium-doped CoMnO nanocubes for enhanced photoelectrochemical aptasensing.

J Colloid Interface Sci

August 2025

Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Huizhou, Guangdong 516081, China. Electronic address:

Sulfadimethoxine (SDM) is an antibiotic used in treating bacterial infections, but it poses health risks if it enters human body through food chains. In this study, a grain-boundary-rich high-entropy selenide (CdCoCuMnZn)Se was prepared by a one-pot solvothermal strategy. Its microstructure, photoactivity and photostability were investigated using various techniques, whose dynamic mechanism was elucidated and the role of elemental doping in enhancing photoelectrochemical (PEC) performance was rigorously evaluated in control groups.

View Article and Find Full Text PDF