98%
921
2 minutes
20
Salmonella typhimurium (S. typhi) a predominant foodborne pathogen, significantly impacting global public health. Therefore, timely diagnosis is imperative to safeguard overall human health. To address this, we developed a novel CRISPR/Cas12a-mediated electrochemical detection system (biosensor) for targeting the SifA gene of S. typhi. To construct the biosensor, we utilized a screen-printed gold electrode (SPGE) as an electrochemical transducer and CRISPR/Cas12a for detection of SifA gene of S. typhi. The developed electrochemical biosensor exhibited an exceptional detection limit of 0.634 ± 0.029 pM, which was determined through differential pulse voltammetry (DPV) by utilizing a potentiostat. We compared the fabricated biosensor with gold standard RT-PCR and the visual detection limit of SifA was found to be 10 μM (in spiked buffer samples). The lower detection limit of fabricated biosensor provides an upper edge over the RT-PCR. Further, the fabricated biosensor also has the potential to serve as a rapid, stable, efficient, and early detection tool for S. typhi, offering promising advancements in diagnostic realms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.128979 | DOI Listing |
Analyst
September 2025
Functional Nanomaterial-based Chemical and Biological Sensing Technology Innovation Team of Department of Education of Yunnan Province, Yunnan Minzu University, Kunming 650504, P. R. China.
Copper ions are essential elements in the human body and participate in various physiological activities in the bodies of organisms. Herein, an ultrasensitive electrochemical biosensor was developed for detection of copper ions (Cu) based on FeO@Au magnetic nanoparticles (FeO@Au MNPs) and a Cu-dependent DNAzyme assisted nicking endonuclease signal amplification (NESA) strategy. dsDNA is formed by a hybridization reaction between DNA S2 and S1 immobilized on the surface of FeO@Au MNPs.
View Article and Find Full Text PDFAnalyst
September 2025
School of Information Science and Technology, Fudan University, 220 Handan Rd, Shanghai 200433, China.
Mercury(II) ions (Hg) are one of the most common and highly toxic heavy metal ions, which can contaminate the environment and damage the human health. Therefore, the precise detection of trace Hg concentration is particularly important. Herein, gold nanoparticles-enhanced silver-coated hollow fiber (HF) surface plasmon resonance (SPR) sensor was developed for the highly sensitive detection of Hg ions.
View Article and Find Full Text PDFAnalyst
September 2025
Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
Mustard agents, including sulphur mustard (SM) and nitrogen mustard (NM), are chemical warfare agents that can cause blistering of the skin and mucous membranes upon contact. Although SM and NM both have dermal effects, their medical management of systemic poisoning differs significantly. A rapid and simple method for detecting and discriminating between SM and NM would be greatly valuable.
View Article and Find Full Text PDFAnal Methods
September 2025
Henan Linker Technology Key Laboratory, College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou 450001, China.
Salicylic acid (SA) is a critical phytohormone involved in plant growth, development, and defense responses, making its precise quantification essential for both agricultural management and environmental monitoring. Here, we report a novel label-free near-infrared aptasensor (NIRApt) for the rapid and sensitive detection of SA, utilizing a rationally selected triphenylmethane (TPM) dye. Through systematic screening, ethyl violet (EV) was identified as the optimal fluorophore, showing pronounced fluorescence enhancement upon binding to a SA-specific aptamer.
View Article and Find Full Text PDFSelective and rapid detection of ammonia (NH) gas over a wide concentration range is essential for applications such as early diagnosis of renal diseases and environmental safety. NH in exhaled breath serves as a biomarker of kidney function, and its precise detection is vital for early renal disease diagnosis. This work reports a SnS/PANI heterojunction nanocomposite (SPA) sensor synthesized a hydrothermal route followed by oxidative polymerization.
View Article and Find Full Text PDF