Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Objective: In silico methods have become the key for efficiently testing and qualifying drug properties. Due to the complexity of the LADME processes and drug characteristics associated to oral drug absorption, there is a growing demand in the development of Physiologically-based Pharmacokinetic (PBPK) software with greater flexibility. Thus, the aims of this work are (i) to develop a mechanistic-based modeling framework of dissolution, transit and absorption (Phys-DAT) processes in the PhysPK platform and (ii) to assess the predictive power of the acausal MOOM methodology embedded in Phys-DAT versus reference ODE-based PBPK software.

Methods: A PBPK model was developed including unreleased, undissolved and dissolved thermodynamic states of the drug. The gastrointestinal tract (GI) was represented by nine compartments and first-order transit kinetics was assumed for the drug fractions. Dissolution processes were described using solubility-independent or solubility-dependent mechanisms and pH effects. Linear transit and linear absorption mechanisms including gradual decrease absorption rate were considered to represent the passive diffusion process. Internal validation of the Phys-DAT model was performed through simulation-based analysis, considering different theoretical scenarios. External validation was carried out using in silico and in vivo data of GI segments and plasma concentrations. Both BCS I and II class drugs were included.

Results: The model predicts plasma-concentration profiles of each compartment for undissolved, dissolved, and absorbed fractions using PhysPK® v.2.4.1. Internal and external validations demonstrate that the model aligned with the theoretical assumptions and accurately predicted C, T, and AUC for both BCS I and II drugs. Average Fold Error (AFE), Absolute Average Fold Error (AAFE), and Percent Prediction Error (PPE) calculations indicate good predictive performance, with predicted/observed ratios falling within the acceptable range.

Conclusions: Phys-DAT represents a mechanistic model for predicting oral absorption, including the dissolution, pH effect, transit, and absorption processes. PhysPK has shown to be a tool with strong prediction accuracy, similar to the obtained by ODE-based PBPK reference software, and the results obtained with the Phys-DAT model for oral administered drugs showed predictive reliability in healthy volunteers, setting the basis to determine the interchangeability of the acausal MOOM methodology with other modeling approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2023.107929DOI Listing

Publication Analysis

Top Keywords

dissolution transit
12
transit absorption
12
physiologically-based pharmacokinetic
8
absorption processes
8
processes physpk
8
acausal moom
8
moom methodology
8
ode-based pbpk
8
undissolved dissolved
8
phys-dat model
8

Similar Publications

Single-Molecule Dual-Anchor Design Enables Extreme-Condition Lithium Metal Batteries Through Solvation Reconstruction and Cathode Polymerization.

Angew Chem Int Ed Engl

September 2025

State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing, 10029, P.R. China.

Lithium metal batteries (LMBs) have emerged as the most promising candidate for next-generation high-energy-density energy storage systems. However, their practical implementation is hindered by the inability of conventional carbonate electrolytes to simultaneously stabilize the lithium metal anode and LiNiCoMnO (NCM811) cathode interfaces, particularly under extreme operating conditions. Herein, we present a transformative molecular design using 3,5-difluorophenylboronic acid neopentyl glycol ester (DNE), which uniquely integrates dual interfacial stabilization mechanisms in a single molecule.

View Article and Find Full Text PDF

Localized corrosion in metallic materials is a stochastic phenomenon that causes irreversible structural failure. Its initiation, which occurs at the solid-liquid interface on the nanometer scale, remains difficult to predict and challenging to characterize. Herein, we describe an experimental platform that exploits advances in electrochemical liquid-phase scanning and transmission electron microscopy (LPSEM and LPTEM) to study pitting corrosion of thin-film pure aluminum in a saline environment in real time.

View Article and Find Full Text PDF

LiNiMnO (LNMO) is a promising material for the cathode of lithium-ion batteries (LiBs); however, its high operating voltage causes stability issues when used with carbonate battery electrolytes. Ionic liquids are a viable alternative to conventional carbonate solvents due to their thermal stability and electrochemical window. This work reports the performance of LNMO/Li half cells with an ionic liquid electrolyte (ILE) composed of 0.

View Article and Find Full Text PDF

To address palladium supply-demand challenges and conventional recovery inefficiencies, this study develops a lithium-mediated electrodeposition process for efficient palladium recycling from spent catalysts. Density functional theory calculations identified a controlled Pd→LiPd (Pd)→LiPdO (Pd) transformation pathway, and experimental verification confirmed that LiPd precursors underwent oxidative transformation into LiPdO with structural inheritance. LiPdO exhibited Pd-O coordination and underwent rapid dissolution in dilute hydrochloric acid.

View Article and Find Full Text PDF

Synergistic t-to-π* Electron Transfer and Nanotube Engineering in Spinal Catalysts for Ultra-Efficient Chloride Evolution.

Angew Chem Int Ed Engl

September 2025

Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.

Facing the massive energy consumption of over 200 TWh y of chlor-alkali industry, developing high-activity and durable non-precious CER (chlorine evolution reaction) catalysts is urgently needed to address the high overpotentials and suppress the dissolution high-valance metal species. Herein, a carbon quantum dots functionalized trimetallic Fe/Co/Ni spinel oxide nanotube architecture (FCNO@CQDs) is constructed, featuring t-to-π* π-backbonding for dramatically enhanced CER activity and stability. The reverse electron flow from Co d-obritals to the vacant CQDs' π* orbitals can upshift the d-band center for enhanced intermediate adsorption, while stabilizing high-valent Co centers via increased bond order.

View Article and Find Full Text PDF