High-Entropy Laminates with High Ion Conductivities for High-Power All-Solid-State Lithium Metal Batteries.

J Am Chem Soc

Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Materials Science & Engineering, Beihang University, Beijing 100191, China.

Published: October 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Solid-state electrolytes (SSEs) are crucial to high-energy-density lithium metal batteries, but they commonly suffer from slow Li transfer kinetics and low mechanical strength, severely hampering the application for all-solid-state batteries. Here, we develop a two-dimensional (2D) high-entropy lithium-ion conductor, lithium-containing transition-metal phosphorus sulfide, HE-LiMPS (Li(FeCoNiMnZn)PS) with five transition-metal atoms and lithium ions (Li) dispersed into [PS] framework layers, exhibiting high lattice distortions and a large amount of cation vacancies. Such unique features enable to efficiently accelerate the migration of Li in 2D [PS] interlamination, delivering a high ionic conductivity of 5 × 10 S cm at room temperature. Moreover, the HE-LiMPS laminate can be employed as a building block to construct an ultrathin SSE film (∼10 μm) based on strong C-S bonding between HE-LiMPS and nitrile-butadiene rubber. The SSE film delivers a strong mechanical robustness (6.0 MPa, 310% elongation) and a high ionic conductivity of 4 × 10 S cm, showing a long cycle stability of 800 h in lithium symmetric cells. Coupled with LiFePO cathode and lithium anode, the all-solid-state battery presents a high Coulombic efficiency of 99.8% within 2000 cycles at 5.0 C.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.3c04279DOI Listing

Publication Analysis

Top Keywords

lithium metal
8
metal batteries
8
high ionic
8
ionic conductivity
8
sse film
8
high
5
lithium
5
high-entropy laminates
4
laminates high
4
high ion
4

Similar Publications

Waste three-way catalysts (TWCs) and waste LiCoO batteries represent critical environmental challenges due to hazardous components yet contain high-value resources, and their recycling has garnered widespread attention. We propose a novel 'waste-to-waste' synergistic recycling where spent LiCoO batteries reconstruct mineral phases of waste TWCs, enabling co-recovery of platinum group metals and Li/Co without traditional oxidants. However, the environmental performance of this process still requires further analysis.

View Article and Find Full Text PDF

Li-Well ZnO Memtransistors: High Reliability for Neuromorphic Applications.

Adv Mater

September 2025

Department of Materials Science & Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea.

Memtransistors are active analog memory devices utilizing ionic memristive materials as channel layers. Since their introduction, the term "memtransistor" has widely been adopted for transistors exhibiting nonvolatile memory characteristics. Currently, memtransistor devices possessing both transistor on/off functionality and nonvolatile memory characteristics include ferroelectric field-effect transistors (FeFETs) and charge-trap flash (floating gate), yet ionic memtransistors have not matched their performance.

View Article and Find Full Text PDF

The electrolyte-electrode interface serves as the foundation for a myriad of chemical and physical processes. In battery chemistry, the formation of a well-known solid-electrolyte interphase (SEI) plays a pivotal role in ensuring the reversible operations of rechargeable lithium-ion batteries (LIBs). However, characterizing the precise chemical composition of the low crystallinity and highly sensitive SEI presents a formidable challenge.

View Article and Find Full Text PDF

Lithium-induced kidney injury is commonly associated with the development of nephrogenic diabetes insipidus. Longer term lithium exposure is associated with the development of chronic interstitial fibrosis. The mechanisms of lithium-induced kidney injury are multifaceted, affecting many intracellular cell signaling pathways associated with cell cycle regulation, cell proliferation, and subsequent increased extracellular matrix formation and interstitial fibrosis.

View Article and Find Full Text PDF

Photovoltaic driven carrier-facilitated membrane process enables efficient and low-carbon recovery of spent lithium ion batteries.

Water Res

September 2025

Shandong Engineering Research Centre for Pollution Control and Resource Valorization in Chemical Industry, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China. Electronic address:

The increasing production of lithium ion batteries (LIBs) necessitates the development of green and sustainable technologies for their recycling. Unfortunately, most of the recycling technologies used are always associated with high energy and chemical reagents consumption, posing a great risk to the environment. Herein, we propose a photovoltaic driven carrier-facilitated electrodialytic membrane process for low carbon recovery of spent ternary LIBs.

View Article and Find Full Text PDF