Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this article, a frequency-locked loop (FLL) based multimodal readout integrated circuit (IC) for interfacing with off-chip temperature, electrochemical, and pH sensors is presented. By reconfiguring its switched-capacitor feedback network, the readout circuit is able to measure resistance, current, and voltage without additional active analog front-end circuits. A prototype IC was fabricated in a 0.18 μm CMOS process. Measured results show that when measuring resistance, the input-referred resistance resolution is 10.5 Ω for 100 Hz integration bandwidth. Using an off-chip thermistor, the readout circuit covers a temperature range of 0-75 C and achieves an equivalent temperature resolution of 16.4 mK. In current mode, the readout circuit has an input range of 0.5μA and an input-referred current noise as low as 40.6 pA for 100 Hz bandwidth. Interfacing with an on-chip potentiostat, glucose chronoamperometry is demonstrated. In voltage mode, a minimum input-referred voltage noise of 31.7 μV is achieved, and the IC can measure a pH range from 1.6 to 12 using a commercial pH probe. At a 1.2 V supply, power consumption of the readout circuit is below 10 μW for all three measurement modes. Additionally, the prototype IC includes an integrated wireless transmitter that implements on-off keying modulation, and a wireless multimodal sensing system utilizing the FLL-based readout circuit is demonstrated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10668580PMC
http://dx.doi.org/10.1109/TBCAS.2023.3288505DOI Listing

Publication Analysis

Top Keywords

readout circuit
24
frequency-locked loop
8
readout
7
circuit
7
reconfigurable tri-mode
4
tri-mode frequency-locked
4
loop readout
4
circuit biosensor
4
biosensor interfaces
4
interfaces article
4

Similar Publications

All-In-One Iontronic Sensing Aligner for High-Precision 3D Orthodontic Force Monitoring.

Adv Sci (Weinh)

September 2025

Department of Orthodontics, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key

Clear aligners offer aesthetic and comfort advantages in orthodontics, yet their ability to deliver effective forces relies heavily on empirical judgment or large-scale optical scanning, lacking real-time quantitative evaluation. Integrating pressure sensors into aligners is a promising solution, but challenges in miniaturization, multi-dimensional sensing, measurement accuracy, and biocompatibility hinder clinical application. Here, an all-in-one Orthodontic Force Acquisition System (OFAS) is presented that enables real-time, 3D force monitoring using a cross-shaped iontronic sensing array and an origami-inspired, wireless battery-free readout circuit miniaturized for single-tooth placement.

View Article and Find Full Text PDF

Early sensory experience can exert lasting perceptual consequences. For example, a brief period of auditory deprivation early in life can lead to persistent spatial hearing deficits. Some forms of hearing loss (i.

View Article and Find Full Text PDF

A monolithically integrated near-infrared imager with crystallization- and oxidation-modulated tin-lead perovskites.

Light Sci Appl

September 2025

State Key Laboratory of Quantum Optics Technologies and Devices, Institute of Laser Spectroscopy, Shanxi University, 030006, Taiyuan, China.

The fast crystallization and facile oxidation of Sn of tin-lead (Sn-Pb) perovskites are the biggest challenges for their applications in high-performance near-infrared (NIR) photodetectors and imagers. Here, we introduce a multifunctional diphenyl sulfoxide (DPSO) molecule into perovskite precursor ink to response these issues by revealing its strong binding interactions with the precursor species. The regulated perovskite film exhibits a dense morphology, reduced defect density and prolonged carrier diffusion length.

View Article and Find Full Text PDF

Here, we present an all-electrical readout mechanism for quasi-0D quantum states (0D-QS), such as point defects, adatoms, and molecules, that is modular and general, providing an approach that is amenable to scaling and integration with other solid-state quantum technologies. Our approach relies on the creation of high-quality tunnel junctions via the mechanical exfoliation and stacking of multilayer graphene (MLG) and hexagonal boron nitride (hBN) to encapsulate the target system in an MLG/hBN/0D-QS/hBN/MLG heterostructure. This structure allows for all-electronic spectroscopy and readout of candidate systems through a combination of coulomb and spin-blockade.

View Article and Find Full Text PDF

Infrared images, rich in temperature information, have a broad range of applications. However, limitations in infrared imaging mechanisms and the manufacturing processes typically prevent uncooled infrared detector arrays from exceeding a resolution of one megapixel. Consequently, designing an efficient infrared image Super-Resolution (SR) algorithm is of significant importance.

View Article and Find Full Text PDF