98%
921
2 minutes
20
The genetic base of soybean cultivars ( (L.) Merr.) has been narrowed through selective domestication and specific breeding improvement, similar to other crops. This presents challenges in breeding new cultivars with improved yield and quality, reduced adaptability to climate change, and increased susceptibility to diseases. On the other hand, the vast collection of soybean germplasms offers a potential source of genetic variations to address those challenges, but it has yet to be fully leveraged. In recent decades, rapidly improved high-throughput genotyping technologies have accelerated the harness of elite variations in soybean germplasm and provided the important information for solving the problem of a narrowed genetic base in breeding. In this review, we will overview the situation of maintenance and utilization of soybean germplasms, various solutions provided for different needs in terms of the number of molecular markers, and the omics-based high-throughput strategies that have been used or can be used to identify elite alleles. We will also provide an overall genetic information generated from soybean germplasms in yield, quality traits, and pest resistance for molecular breeding.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10248635 | PMC |
http://dx.doi.org/10.1007/s11032-023-01378-0 | DOI Listing |
J Integr Plant Biol
September 2025
State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Center for Soybean Improvement, National Innovation Platform for Soybean Breeding and Industry-Education Integration, Key Laboratory for Biology and Genetic Improvement o
Soybean is an important source of oil, protein, and feed. However, its yield is far below that of major cereal crops. The green revolution increased the yield of cereal crops partially through high-density planting of lodging-resistant semi-dwarf varieties, but required more nitrogen fertilizers, posing an environmental threat.
View Article and Find Full Text PDFPlant Physiol Biochem
September 2025
Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China. Electronic address:
Magnesium (Mg) is an essential macronutrient in plants, vital for photosynthesis, enzyme activation, protein synthesis, and carbon metabolism. This study evaluated the effects of magnesium oxide nanoparticles (MgO NPs) on growth, physiological performance, and rhizosphere microbial composition in soybean (Glycine max L.).
View Article and Find Full Text PDFPlant Biotechnol J
September 2025
State Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
Soybean is one of the most important oilseed crops, and its seed oil content directly determines the economic value and industrial applicability worldwide. However, how soybean seed oil accumulation is regulated remains less understood. Here, through RNA-seq analysis and screening for the interacting proteins of a positive oil regulator GmNFYA, we identified an AP2/ERF-type transcription factor GmERFA, which acts as a negative regulator of oil accumulation.
View Article and Find Full Text PDFBMC Genomics
September 2025
Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan.
Background: Soybean (Glycine max) is a globally important crop, yet its genetic diversity remains underutilized in breeding programs, particularly in emerging production regions such as Kazakhstan. As Kazakhstan expands its soybean cultivation, a detailed understanding of the genetic diversity and population structure of both local and international germplasm is critical for developing regionally adapted cultivars.
Results: This study analyzed 694 soybean accessions - including landraces, modern cultivars, and wild relatives (Glycine soja) - using 80,971 high-quality SNPs obtained via whole-genome resequencing.
BMC Plant Biol
September 2025
The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China. sun
Soybean seed physical characteristics are crucial for quality assessment, but the link between these characteristics and biochemical composition across different maturity groups (MGs) remains unclear. This study examined the relationships between seed physical characteristics (color and weight) and biochemical constituents, including oil content (OC), protein content (PC), and fatty acid (FA) composition in 191 diverse soybean accessions across eight MGs (0-VII) at three locations over two years. The results indicated that black-seeded accessions demonstrated a notably higher average of PC (47.
View Article and Find Full Text PDF