98%
921
2 minutes
20
Efficient and accurate distinction of histopathological subtype of lung cancer is quite critical for the individualized treatment. So far, artificial intelligence techniques have been developed, whose performance yet remained debatable on more heterogenous data, hindering their clinical deployment. Here, we propose an end-to-end, well-generalized and data-efficient weakly supervised deep learning-based method. The method, end-to-end feature pyramid deep multi-instance learning model (E2EFP-MIL), contains an iterative sampling module, a trainable feature pyramid module and a robust feature aggregation module. E2EFP-MIL uses end-to-end learning to extract generalized morphological features automatically and identify discriminative histomorphological patterns. This method is trained with 1007 whole slide images (WSIs) of lung cancer from TCGA, with AUCs of 0.95-0.97 in test sets. We validated E2EFP-MIL in 5 real-world external heterogenous cohorts including nearly 1600 WSIs from both United States and China with AUCs of 0.94-0.97, and found that 100-200 training images are enough to achieve an AUC of >0.9. E2EFP-MIL overperforms multiple state-of-the-art MIL-based methods with high accuracy and low hardware requirements. Excellent and robust results prove generalizability and effectiveness of E2EFP-MIL in clinical practice. Our code is available at https://github.com/raycaohmu/E2EFP-MIL.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.media.2023.102837 | DOI Listing |
Biochem Soc Trans
September 2025
Department of Biochemistry, McGill University, Montréal, QC, Canada.
The MET receptor tyrosine kinase is a pivotal regulator of cellular survival, motility, and proliferation. Mutations leading to skipping of exon 14 (METΔex14) within the juxtamembrane domain of MET impair receptor degradation and prolong oncogenic signaling, contributing significantly to tumor progression across multiple cancer types. METΔex14 mutations are associated with aggressive clinical behavior, therapeutic resistance, and poor outcomes.
View Article and Find Full Text PDFPLoS One
September 2025
Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China.
MicroRNAs (miRNAs) are critical regulators of gene expression in cancer biology, yet their spatial dynamics within tumor microenvironments (TMEs) remain underexplored due to technical limitations in current spatial transcriptomics (ST) technologies. To address this gap, we present STmiR, a novel XGBoost-based framework for spatially resolved miRNA activity prediction. STmiR integrates bulk RNA-seq data (TCGA and CCLE) with spatial transcriptomics profiles to model nonlinear miRNA-mRNA interactions, achieving high predictive accuracy (Spearman's ρ > 0.
View Article and Find Full Text PDFPLoS One
September 2025
Biobank of Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
Heart failure (HF) and lung cancer (LC) often coexist, yet their shared molecular mechanisms are unclear. We analyzed transcriptome data from the NCBI Gene Expression Omnibus (GEO) database (GSE141910, GSE57338) to identify 346 HF‑related differentially expressed genes (DEGs), then combined weighted gene co-expression network analysis (WGCNA) pinpointed 70 hub candidates. Further screening of these 70 hub candidates in TCGA lung cancer cohorts via LASSO, Random Forest, and multivariate Cox regression suggested CYP4B1 as the only independent prognostic marker.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Korea.
Volumetric modulated arc therapy (VMAT) for lung cancer involves complex multileaf collimator (MLC) motion, which increases sensitivity to interplay effects with tumour motion. Current dynamic conformal arc methods address this issue but may limit the achievable dose distribution optimisation compared with standard VMAT. This study examined the clinical utility of a VMAT technique with monitor unit limits (VMATliMU) to mimic conformal arc delivery and reduce interplay effects while maintaining plan quality.
View Article and Find Full Text PDFJAMA Netw Open
September 2025
Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.
Importance: Patients with advanced cancer frequently receive broad-spectrum antibiotics, but changing use patterns across the end-of-life trajectory remain poorly understood.
Objective: To describe the patterns of broad-spectrum antibiotic use across defined end-of-life intervals in patients with advanced cancer.
Design, Setting, And Participants: This nationwide, population-based, retrospective cohort study used data from the South Korean National Health Insurance Service database to examine broad-spectrum antibiotic use among patients with advanced cancer who died between July 1, 2002, and December 31, 2021.