98%
921
2 minutes
20
In recent years, cardiovascular and cerebrovascular diseases have been the focus of several studies. In this study, oyster protein hydrolysate was produced via enzyme hydrolysis and used as a fermentation substrate to ferment recombinant strain to produce nattokinase. Using the synergism strategy, fermentation products with fibrinolytic and angiotensin I-converting enzyme (ACE) inhibitory activities were obtained and evaluated. The fermentation medium contained 1.0% trypsin, 1.0% oyster protein hydrolysate, 2.0% maltose, and 0.5% sodium chloride, with an initial pH of 7.0. The maximum nattokinase activity was 390.23 ± 10.24 FU/mL after 72 h of fermentation. The flavor of the product was improved, and heavy metals and volatile salt nitrogen were partially removed via fermentation. The ACE inhibitory activity (IC) of the fermentation products was 1.433 mg/mL. This study provides a novel approach for the development of marine functional foods with hypotensive and antithrombotic properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10048384 | PMC |
http://dx.doi.org/10.3390/foods12061252 | DOI Listing |
Dev Comp Immunol
September 2025
Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, 300071, China. Electronic address:
The phylum Mollusca is one of the most diverse groups, second only to arthropods, whose production through aquaculture and wild capture is increasing due to its nutritional and economic values, especially its protein availability for human consumption. However, the negative influence caused by pathogen infection and environmental challenges has led to low aquaculture productivity and economic losses for shellfish farmers. Heat shock proteins, as molecular chaperones, contribute to the folding of nascent proteins, environmental adaptation, the immune response, etc.
View Article and Find Full Text PDFJ Proteome Res
September 2025
State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
Shell matrix proteins (SMPs) are fundamental biological macromolecules for mollusk shell formation, yet fewer than 400 SMPs in mollusks have been previously identified, hindering our understanding of how mollusks construct and maintain their shells. Here, we identified 1689 SMPs in the Pacific oyster using three different mass spectrometry techniques, representing a significant methodological advancement in shell proteomics, enabling a 6.52-fold increase in SMP identification compared to previous studies.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
September 2025
Department of Marine Biology and Aquaculture, Gyeongsang National University, Tongyeong, 53064, Republic of Korea. Electronic address:
Hypoxia and elevated seawater temperatures are increasingly prevalent stressors in marine ecosystems, significantly impacting the physiology of marine organisms. This study investigates the transcriptomic and proteomic responses of Pacific oyster (Crassostrea gigas) hemocytes to hypoxia alone (water temperature, 23 °C; dissolved oxygen [DO] level, 1 mg O₂/L) and combined hypoxia with high temperature (water temperature, 28 °C; DO level, 1 mg O₂/L) over a 10-day exposure period. Using RNA sequencing and liquid chromatography-mass spectrometry, we identified distinct molecular responses to these stressors.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 266100, China; College of Food Science and Engineering, Ocean University of China, Sansha Road, Qingdao, Shandong Province 266100, China; Sanya Oceanographic Instituti
Proteins, as typical macromolecules in aquatic products, have been demonstrated to play a crucial role in flavor release. The structural modifications of water-soluble proteins (WSP), salt-soluble proteins (SSP), and alkali-soluble proteins (ALSP) in oysters after Sous Vide (SV) heating, along with their interactions with flavor compounds, were systematically investigated. More significant alterations in secondary and tertiary structures in SSP were observed compared to WSP and ALSP following SV heating, accompanied by the highest degree of hydrophobicity and aggregation.
View Article and Find Full Text PDFJ Sci Food Agric
September 2025
College of Food Science and Engineering, Dalian Ocean University, Dalian, China.
Background: The phenomenon of increased toughness of adductor muscle of Pacific oysters (Crassostrea gigas) during heat treatment considerably impacts their palatability. Thus, the present study was conducted aiming to investigate the relationship between the adductor muscle proteins and observed toughness.
Results: During heat treatment with boiling, the smooth muscle exhibited greater difficulty in detaching from the shell compared to the striated muscle, indicating more pronounced toughness.