Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tendon injuries are some of the most commonly diagnosed musculoskeletal diseases. Tendon regeneration is sensitive to the topology of the substitute as it affects the cellular microenvironment and homeostasis. To bionic in vivo three-dimensional (3D) aligned microenvironment, an ordered 3D sandwich model was used to investigate the cell response in the tendon. First, high-resolution 3D printing provided parallel-grooved topographical cues on the hydrogel surface. Then the cells were seeded on its surface to acquire a 2D model. Afterward, an additional hydrogel coating layer was applied to the cells to create the 3D model. The interaction between cells and order structures in three-dimensions is yet to be explored. The study found that the tendon stem/progenitor cells (TSPCs) still maintain their ordering growth in the 3D model as in the 2D model. The study also found that the 3D-aligned TSPCs exhibited enhanced tenogenic differentiation through the PI3K-AKT signaling pathway and presented a less inflammatory phenotype than those in the 2D model. The in vivo implantation of such a 3D-aligned TSPC composite promoted tendon regeneration and mitigated heterotopic ossification in an Achilles defect model. These findings demonstrated that 3D-aligned TSPCs within a biomimetic topology environment are promising for functional tendon regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c16584DOI Listing

Publication Analysis

Top Keywords

tendon regeneration
16
tendon
8
tendon stem/progenitor
8
functional tendon
8
3d-aligned tspcs
8
model
7
sandwich biomimetic
4
biomimetic scaffold
4
scaffold based
4
based tendon
4

Similar Publications

Purpose: We aimed to compare the effects of atelocollagen (AC) and individual growth factors on the expression of key molecular markers associated with tendon healing.

Methods: C2C12 myoblasts were cultured in Dulbecco's Modified Eagle Medium (DMEM) containing 5% fetal bovine serum (FBS) and treated with 1 nM or 10 nM of Atelocollagen (AC), bone morphogenetic protein-2 (BMP-2), transforming growth factor-beta 1 (TGF-β1), insulin-like growth factor-1 (IGF-1), or vascular endothelial growth factor (VEGF) for 5 days. After 5 days of treatment, cells were harvested from the culture medium, and Western blot analysis was performed to quantify the expression of phosphorylated extracellular signal-regulated kinase (p-ERK), Collagen type I (Col I), Collagen type Ⅲ (Col Ⅲ), and Tenascin C (TnC).

View Article and Find Full Text PDF

Enhanced rotator cuff tendon-bone interface regeneration with injectable manganese-based mesoporous silica nanoparticle-loaded dual crosslinked hydrogels.

Front Bioeng Biotechnol

August 2025

Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, Guangdong, China.

Introduction: During the healing process, the functional gradient attachment of the rotator cuff (RC) tendon-bone interface fails to regenerate, which severely impedes load transfer and stress dissipation, thereby increasing the risk of retears. As a result, the treatment of rotator cuff tears remains a significant clinical challenge.

Methods: In this study, a dual-crosslinked hyaluronic acid/polyethylene glycol (HA/PEG) hydrogel scaffold was synthesized using hyaluronic acid and polyethylene glycol as base materials.

View Article and Find Full Text PDF

Objective: Purified collagen matrix containing a broad-spectrum antimicrobial, polyhexamethylene biguanide (PuraPly Antimicrobial (PCMP); Organogenesis Inc., US) has been shown to be an effective adjunct in managing wounds of different aetiologies. The aim of this study was to show the clinical outcomes of PCMP in the management of pressure injuries (PIs) and its implication on healthcare.

View Article and Find Full Text PDF

Rotator cuff tears (RCTs) are a prevalent cause of shoulder dysfunction, with postoperative retearing remaining a significant challenge due to poor tendon-to-bone healing. Mesenchymal stem cells (MSCs), owing to their multipotency, immunomodulatory properties, and diverse tissue sources, have emerged as a promising therapeutic strategy. Current approaches include direct MSC implantation, MSC-laden scaffolds for structural support, and utilization of MSC-derived conditioned medium (CM) or exosomes to enhance regeneration.

View Article and Find Full Text PDF

Platelet-rich plasma-contained drug delivery systems to treat orthopedic injuries.

Int J Pharm X

December 2025

Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States.

Orthopedic disorders affecting bones, joints, muscles, tendons, and other tissues are prevalent among outpatients, often caused by trauma, sports, or tumor removal. Surgical intervention is common but may yield unsatisfactory results due to limited regenerative capacity and poor blood supply. Platelet-rich plasma (PRP), an autologous biocomponent, has been clinically applied in tissue regeneration and repair, yet it faces challenges such as unclear mechanisms, side effects, and uncontrollable release.

View Article and Find Full Text PDF