Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Diabetic nephropathy (DN) is one of the serious complications of diabetes that has limited treatment options. As a lytic inflammatory cell death, pyroptosis plays an important role in the pathogenesis of DN. Syringaresinol (SYR) possesses anti-inflammatory and antioxidant properties. However, the therapeutic effects and the underlying mechanism of SYR in DN remain unclear. Herein, we showed that SYR treatment ameliorated renal hypertrophy, fibrosis, mesangial expansion, glomerular basement membrane thickening, and podocyte foot process effacement in streptozotocin (STZ)-induced diabetic mice. Mechanistically, SYR prevented the abundance of pyroptosis-related proteins such as NOD-like receptor family pyrin domain containing 3 (NLRP3), cysteinyl aspartate-specific proteinase 1 (Caspase-1), and gasdermin D (GSDMD), and the biosynthesis of inflammatory cytokines interleukin 1β (IL-1β) and interleukin 18 (IL-18). In addition, SYR promoted the nuclear translocation of nuclear factor E2-related factor 2 (NRF2) and enhanced the downstream antioxidant enzymes heme oxygenase 1 (HO-1) and manganese superoxide dismutase (MnSOD), thereby effectively decreasing excess reactive oxygen species (ROS). Most importantly, knockout of NRF2 abolished SYR-mediated renoprotection and anti-pyroptotic activities in NRF2-KO diabetic mice. Collectively, SYR inhibited the NLRP3/Caspase-1/GSDMD pyroptosis pathway by upregulating NRF2 signaling in DN. These findings suggested that SYR may be promising a therapeutic option for DN.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10565-023-09790-0DOI Listing

Publication Analysis

Top Keywords

diabetic nephropathy
8
diabetic mice
8
syr
7
syringaresinol protects
4
diabetic
4
protects diabetic
4
nephropathy inhibiting
4
inhibiting pyroptosis
4
pyroptosis nrf2-mediated
4
nrf2-mediated antioxidant
4

Similar Publications

A novel treatment for diabetic nephropathy: Folate receptor-targeted delivery of TLR4 siRNA via functionalized PLGA nanoparticles in streptozotocin-induced diabetic murine models.

Nanomedicine

September 2025

The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Department of Nephrology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, People's Republic of China; Key laboratory of nephropathy, The S

Diabetic kidney disease (DKD), a prominent microvascular complication of diabetes mellitus and the leading cause of end-stage renal disease (ESRD), was addressed through a novel nanotherapeutic approach. This study engineered folic acid-conjugated poly(lactic-co-glycolic acid) nanoparticles (FA-PLGA NPs) for the folate receptor (FR)-targeted delivery of Toll-like receptor 4 small interfering RNA (TLR4 siRNA) to treat diabetic nephropathy (DN). In a streptozotocin-induced DN murine model, administration of FA-PLGA NPs/TLR4 siRNA significantly mitigated renal injury compared to untreated DN controls.

View Article and Find Full Text PDF

Huangkui capsules for diabetic nephropathy: Comprehensive review of efficacy and molecular mechanisms.

Phytomedicine

August 2025

Center for Clinical Reseach, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China. Electronic address:

Background: The management of kidney diseases urgently needs additional therapeutic options. Encouraging evidence suggests the efficacy of Huangkui capsules (HKCs), a plant-derived traditional medicine, in treating various subtypes of nephropathy. However, current evidence is fragmented between clinical outcomes and mechanistic insights.

View Article and Find Full Text PDF

Background: Diabetic nephropathy (DN), a serious diabetic complication, currently has limited treatment options. Yulan Jiangtang capsules (YL) are a clinically approved traditional Chinese medicine formula for glycemic control and diabetes-related complications. Nevertheless, the underlying mechanisms of their therapeutic effects remain incompletely elucidated.

View Article and Find Full Text PDF

Dietary non-starch plant polysaccharides: Multi-mechanisms for managing diabetic microvascular complications.

Carbohydr Polym

November 2025

State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China. Electronic address:

The global burden of diabetes has been exacerbated by a shift in dietary patterns toward diets rich in refined sugars, saturated fats and energy-dense nutrients. Diabetes is a metabolic disease characterized by chronic hyperglycemia. Persistently elevated blood glucose levels can lead to microvascular complications that contribute greatly to reduced quality of life, disability or death.

View Article and Find Full Text PDF

Islet transplantation offers a promising therapeutic strategy for type 1 diabetes patients with inadequate glycemic control or severe complications. Islet encapsulation using biocompatible materials presents a potential solution to reduce immune rejection. This study fabricated and characterized Schiff base hydrogels (CMOCs) composed of varying ratios of carboxymethyl chitosan (CMCS) and oxidized carboxymethyl starch (OCMS).

View Article and Find Full Text PDF