98%
921
2 minutes
20
Stem strength is an important agronomic trait affecting plant lodging, and plays an essential role in the quality and yield of plants. Thickened secondary cell walls in stems provide mechanical strength that allows plants to stand upright, but the regulatory mechanism of secondary cell wall thickening and stem strength in cut flowers remains unclear. In this study, first, a total of 11 non-redundant Paeonia lactiflora R2R3-MYBs related to stem strength were identified and isolated from cut-flower herbaceous peony, among which PlMYB43, PlMYB83 and PlMYB103 were the most upregulated differentially expressed genes. Then, the expression characteristics revealed that these three R2R3-MYBs were specifically expressed in stems and acted as transcriptional activators. Next, biological function verification showed that these P. lactiflora R2R3-MYBs positively regulated stem strength, secondary cell wall thickness and lignin deposition. Furthermore, yeast-one-hybrid and dual luciferase reporter assays demonstrated that they could bind to the promoter of caffeic acid O-methyltransferase gene (PlCOMT2) and/or laccase gene (PlLAC4), two key genes involved in lignin biosynthesis. In addition, the function of PlLAC4 in increasing lignin deposition was confirmed by virus-induced gene silencing and overexpression. Moreover, PlMYB83 could also act as a transcriptional activator of PlMYB43. The findings of the study propose a regulatory network of R2R3-MYBs modulating lignin biosynthesis and secondary cell wall thickening for improving stem lodging resistance, and provide a resource for molecular genetic engineering breeding of cut flowers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tpj.16107 | DOI Listing |
Crit Rev Immunol
January 2025
State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China.
Stemming from human immune organs, tonsil-derived mesenchymal stem cells (TMSCs) hold unique strengths in differentiation potential and immune regulatory functions. These characteristics make them valuable for therapeutic applications, particularly in regenerative medicine and autoimmune disease treatment, as they can modulate immune responses and promote tissue repair. Their ability to interact with various cell types and secrete a range of bioactive molecules further enhances their role in orchestrating healing processes, making them a promising avenue for innovative therapies aimed at restoring balance in the immune system and facilitating recovery from injury or disease.
View Article and Find Full Text PDFRSC Adv
August 2025
Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais Lisboa 1049-001 Portugal
Bone-related injuries represent a major global challenge, particularly for the aging population. While bone has self-healing capabilities, large defects and non-union fractures often fail to completely regenerate, leading to long-term disability and the need for surgical intervention. Autologous bone grafts remain the gold standard for such procedures, but challenges such as limited donor availability and donor site comorbidity persist.
View Article and Find Full Text PDFFood Chem
September 2025
School of Science, RMIT University, Melbourne, VIC 3083, Australia; The Centre for Advanced Materials and Industrial Chemistry (CAMIC), Melbourne, VIC 3083, Australia. Electronic address:
Protein-rich custards were developed for elderly individuals with dysphagia by combining soy protein isolate (SPI) and milk protein concentrate (MPC), with and without transglutaminase (TG). The formulations were designed to resemble the texture, rheology, and swallowability of MPC-only custard. Custards with 1:1 and 1:2 SPI-to-MPC ratios, both with and without 0.
View Article and Find Full Text PDFJ Cosmet Dermatol
September 2025
Cosmetic Laser Dermatology, San Diego, California, USA.
Background: With the rise of regenerative medicine and geroscience, translational research has shifted focus from lifespan to healthspan-years lived in good health. Applied to aesthetic medicine, the authors introduce the concept of "skinspan," to both describe the period during which skin maintains a youthful, healthy appearance, and additionally to serve as a tool for the cosmetic consult.
Aims: The aim of this comprehensive review is to illuminate "skinspan" as a framework for guiding long-term skin health.
J Integr Plant Biol
September 2025
State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Center for Soybean Improvement, National Innovation Platform for Soybean Breeding and Industry-Education Integration, Key Laboratory for Biology and Genetic Improvement o
Soybean is an important source of oil, protein, and feed. However, its yield is far below that of major cereal crops. The green revolution increased the yield of cereal crops partially through high-density planting of lodging-resistant semi-dwarf varieties, but required more nitrogen fertilizers, posing an environmental threat.
View Article and Find Full Text PDF