70 results match your criteria: "Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences[Affiliation]"

Synthetic cathinones, a major class of new psychoactive substances (NPS), pose a growing public health threat due to their widespread recreational use, particularly among young people. While metabolism significantly influences xenobiotic toxicity, its role in synthetic cathinone neurotoxicity remains underexplored. Similarly to the other cathinones included in this study, 4-CBC and 3-CBC were rapidly metabolized in vitro (t/ < 20 min), producing dihydro-metabolites as major products.

View Article and Find Full Text PDF

Cardiovascular diseases are the leading cause of global mortality. These conditions are associated with cardiac cell death and loss of vascularization, potentially progressing to fatal myocardial infarction. However, the lack of accurate models to simulate the complex cardiac tissue microenvironment and explore alternative therapeutics contributes to heart disease still being regarded as irreversible.

View Article and Find Full Text PDF

Central nervous system vascularization in human embryos and neural organoids.

Cell Rep

December 2024

Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA. Electronic address:

Article Synopsis
  • Neural organoids from human pluripotent stem cells are emerging as powerful tools for exploring CNS development, disease, and drug interactions.
  • Despite their promise, many studies on CNS organoids lack effective blood vessel systems, limiting their applicability.
  • The review examines current knowledge on vascular development in various CNS regions and emphasizes the need for bioengineering advancements to create more functional vascularized organoid models for research purposes.
View Article and Find Full Text PDF

Purpose: The Achilles tendon is a common injury site, but anatomical risk factors for injury are relatively unexplored in the literature. This study aimed to evaluate whether changes in free tendon length would influence the results of a simulated rupture of the Achilles tendon.

Methods: Using a previously validated 3D finite element model of the free and aponeurotic Achilles tendon as a basis, two additional finite element models with 25% decreased and increased free tendon lengths were created.

View Article and Find Full Text PDF

Polymeric scaffolds play a pivotal role in tissue engineering (TE) and regenerative medicine strategies, as they offer the possibility to closely mimic the architectural features of the native tissues' extracellular matrix (ECM) and support cell performance both in vitro and in vivo, creating a favourable regenerative microenvironment [...

View Article and Find Full Text PDF

Involvement of extracellular vesicle microRNA clusters in developing healthy and Rett syndrome brain organoids.

Cell Mol Life Sci

September 2024

Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, 6200, MD, The Netherlands.

Rett syndrome (RTT) is a neurodevelopmental disorder caused by de novo mutations in the MECP2 gene. Although miRNAs in extracellular vesicles (EVs) have been suggested to play an essential role in several neurological conditions, no prior study has utilized brain organoids to profile EV-derived miRNAs during normal and RTT-affected neuronal development. Here we report the spatiotemporal expression pattern of EV-derived miRNAs in region-specific forebrain organoids generated from female hiPSCs with a MeCP2:R255X mutation and the corresponding isogenic control.

View Article and Find Full Text PDF

The periodontium is a complex hierarchical structure composed of alveolar bone, periodontal ligament, cementum, and gingiva. Periodontitis is an inflammatory disease that damages and destroys the periodontal tissues supporting the tooth. Periodontal therapies aim to regenerate the lost tissues, yet current treatments lack the integration of multiple structural/biochemical instructive cues to induce a coordinated regeneration, which leads to limited clinical outcomes.

View Article and Find Full Text PDF

A Comprehensive Exploration of Therapeutic Strategies in Inflammatory Bowel Diseases: Insights from Human and Animal Studies.

Biomedicines

March 2024

CIVG-Vasco da Gama Research Center, University School Vasco da Gama (EUVG), Campus Universitário, Av. José R. Sousa Fernandes, Lordemão, 3020-210 Coimbra, Portugal.

Inflammatory bowel disease (IBD) is a collective term for a group of chronic inflammatory enteropathies which are characterized by intestinal inflammation and persistent or frequent gastrointestinal signs. This disease affects more than 3.5 million humans worldwide and presents some similarities between animal species, in particular, dogs and cats.

View Article and Find Full Text PDF

Background Aims: Parkinson's disease (PD) is the second most common neurodegenerative disorder. The etiology of the disease remains largely unknown, but evidence have suggested that the overexpression and aggregation of alpha-synuclein (α-syn) play key roles in the pathogenesis and progression of PD. Mesenchymal stromal cells (MSCs) have been earning attention in this field, mainly due to their paracrine capacity.

View Article and Find Full Text PDF

Purpose: Studies have shown decreased match participation and shortened careers in athletes suffering Achilles tendon ruptures (ATRs), but assessment using a true performance metric is lacking. Plus/minus (PM) metrics provide a practical and objective approach to player performance assessment and are commonly used in other sports. This study aimed to quantify and compare individual player performance variations in elite football league players who sustained ATRs and returned to play within 1 year compared to those without ATRs, using a PM metric.

View Article and Find Full Text PDF

Organoids as complex (bio)systems.

Front Cell Dev Biol

August 2023

Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.

Organoids are three-dimensional structures derived from stem cells that mimic the organization and function of specific organs, making them valuable tools for studying complex systems in biology. This paper explores the application of complex systems theory to understand and characterize organoids as exemplars of intricate biological systems. By identifying and analyzing common design principles observed across diverse natural, technological, and social complex systems, we can gain insights into the underlying mechanisms governing organoid behavior and function.

View Article and Find Full Text PDF

Bone defect repair remains a critical challenge in current orthopedic clinical practice, as the available therapeutic strategies only offer suboptimal outcomes. Therefore, bone tissue engineering (BTE) approaches, involving the development of biomimetic implantable scaffolds combined with osteoprogenitor cells and native-like physical stimuli, are gaining widespread interest. Electrical stimulation (ES)-based therapies have been found to actively promote bone growth and osteogenesis in both in vivo and in vitro settings.

View Article and Find Full Text PDF

Osteoporotic-related fractures are among the leading causes of chronic disease morbidity in Europe and in the US. While a significant percentage of fractures can be repaired naturally, in delayed-union and non-union fractures surgical intervention is necessary for proper bone regeneration. Given the current lack of optimized clinical techniques to adequately address this issue, bone tissue engineering (BTE) strategies focusing on the development of scaffolds for temporarily replacing damaged bone and supporting its regeneration process have been gaining interest.

View Article and Find Full Text PDF

This work explores the unique features of magnetic-responsive hydrogels to obtain liposomal hydrogel delivery platforms capable of precise magnetically modulated drug release based on the mechanical responses of these hydrogels when exposed to an external magnetic field. Magnetic-responsive liposomal hydrogel delivery systems were prepared by encapsulation of 1,2-dipalmitoyl-sn-glycero-3-phosphocoline (DPPC) multilayered vesicles (MLVs) loaded with ferulic acid (FA), i.e.

View Article and Find Full Text PDF

Cell-based therapies using periodontal ligament stromal cells (PDLSC) for periodontal regeneration may represent an alternative source for mesenchymal stromal cells (MSC) to MSC derived from bone marrow (MSC(M)) and adipose tissue (MSC(AT)). We aimed to characterize the osteogenic/periodontal potential of PDLSC in comparison to MSC(M) and MSC(AT). PDLSC were obtained from surgically extracted healthy human third molars, while MSC(M) and MSC(AT) were obtained from a previously established cell bank.

View Article and Find Full Text PDF

Parkinson's disease (PD) is the second most common neurodegenerative disorder and is characterized by the degeneration of the dopamine (DA) neurons in the substantia nigra pars compacta, leading to a loss of DA in the basal ganglia. The presence of aggregates of alpha-synuclein (α-synuclein) is seen as the main contributor to the pathogenesis and progression of PD. Evidence suggests that the secretome of mesenchymal stromal cells (MSC) could be a potential cell-free therapy for PD.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are cell-derived nano-sized lipid membranous structures that modulate cell-cell communication by transporting a variety of biologically active cellular components. The potential of EVs in delivering functional cargos to targeted cells, their capacity to cross biological barriers, as well as their high modification flexibility, make them promising drug delivery vehicles for cell-free therapies. Mesenchymal stromal cells (MSCs) are known for their great paracrine trophic activity, which is largely sustained by the secretion of EVs.

View Article and Find Full Text PDF

Osteochondral (OC) defects affect both articular cartilage and the underlying subchondral bone. Due to limitations in the cartilage tissue's self-healing capabilities, OC defects exhibit a degenerative progression to which current therapies have not yet found a suitable long-term solution. Tissue engineering (TE) strategies aim to fabricate tissue substitutes that recreate natural tissue features to offer better alternatives to the existing inefficient treatments.

View Article and Find Full Text PDF

In Response to: Healing Predictors of Conservative Treatment for Juvenile Osteochondritis Dissecans of the Talus.

Clin J Sport Med

July 2023

Department of Orthopaedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands.

View Article and Find Full Text PDF

Hypertrophic cardiomyopathy (HCM) is a common heart disease associated with sudden cardiac death. Early diagnosis is critical to identify patients who may benefit from implantable cardioverter defibrillator therapy. Although genetic testing is an integral part of the clinical evaluation and management of patients with HCM and their families, in many cases the genetic analysis fails to identify a disease-causing mutation.

View Article and Find Full Text PDF

Understanding the mechano-biological coupling mechanisms of biomaterials for tissue engineering is of major importance to assure proper scaffold performance in situ. Therefore, it is of paramount importance to establish correlations between biomaterials, their processing conditions, and their mechanical behaviour, as well as their biological performance. With this work, it was possible to infer a correlation between the addition of graphene nanoparticles (GPN) in a concentration of 0.

View Article and Find Full Text PDF

The present study focused on the cloning, expression, and characterization of L-asparaginase of marine Pseudomonas aeruginosa HR03 isolated from fish intestine. Thus, a gene fragment containing the L-asparaginase sequence of Pseudomonas aeruginosa HR03 isolated from the fish intestine was cloned in the pET21a vector and then expressed in Escherichia coli BL21 (DE3) cells. Thereafter, the recombinant L-asparaginase (HR03Asnase) was purified by nickel affinity chromatography, and the enzymatic properties of HR03Asnase, including the effects of pH and temperature on HR03Asnase activity and its kinetic parameters, were determined.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSC) have been proposed as an emerging cell-based therapeutic option for regenerative medicine applications as these cells can promote tissue and organ repair. In particular, MSC have been applied for the treatment of bone fractures. However, the healing capacity of these fractures is often compromised by patient's age.

View Article and Find Full Text PDF

The Mesenchymal stromal cells (MSCs) are a diverse subset of adult multipotent precursors, known for their potential therapeutic properties in regenerative medicine mainly sustained by paracrine effects through secretion of a variety of biologically active molecules. MSC secretome includes a wide range of soluble protein factors, composed of growth factors and cytokines, and vesicular components, which transfer proteins and genetic material modulating the host microenvironment. In particular, MSC-derived secretome mediates the different steps of the angiogenic process, inducing endothelial cell functions in vitro and promoting angiogenesis in vivo.

View Article and Find Full Text PDF

Early cost estimating model for new bioabsorbable orthopedic implant candidates: A theoretical study.

J Mech Behav Biomed Mater

December 2021

Institute for Data, Systems and Society, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, United States. Electronic address:

An early health technology assessment (HTA) study was performed to assess the need for developing a new bioabsorbable implant for the treatment of specific orthopedic injuries. The Anterior Cruciate Ligament Reconstruction (ACLR) procedure was selected based on the need and potential impact of bioabsorbable implants in the treatment of ACL injuries. The economic model considers the possible health events after an ACLR (failures and other complications such as stiffness and pain).

View Article and Find Full Text PDF