Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Context: Salvianolic acid B (SalB) can attenuate myocardial ischemia/reperfusion (I/R) injury, but the mechanisms are not entirely known.

Objective: Our study investigates if SalB protects cardiomyocytes against I/R injury by regulating Tripartite motif (TRIM) protein.

Materials And Methods: AC16 cardiomyocytes were treated with I/R, and then with SalB (10, 25 and 50 μM) for 24 h, while control cells were cultured under normal conditions. Female Sprague-Dawley rats were subjected to I/R injury, and then intravenously injected with 20, 40, or 60 mg/kg SalB or saline, as a control, rats received sham operation and saline injection.

Results: Upon treatment, apoptotic rate, reactive oxygen species (ROS), and malondialdehyde (MDA) were increased 10-, 3.8-, and 1.3-fold, respectively, while superoxide dismutase (SOD) activity was reduced by 62.1% compared to control cells. I/R treatment elevated the mRNA and protein expression of TRIM8. SalB treatment remarkably abolished the above-mentioned effects of I/R treatment. TRIM8 knock-down could partially alleviate I/R-induced myocardial injury. TRIM8 overexpression promoted cardiomyocyte injury, which was alleviated by SalB. Moreover, TRIM8 negatively regulated protein expression of antioxidant enzyme glutathione peroxidase 1 (GPX1). TRIM8 protein interacted with GPX1 and TRIM8 overexpression promoted GPX1 ubiquitnation. GPX1 knock-down abolished the protective effects of SalB on I/R-injured cardiomyocytes. Our experiments confirmed the effects of SalB on I/R-induced myocardial injury.

Discussion And Conclusions: SalB protected cardiomyocytes from I/R-induced apoptosis and oxidative stress and , which was partly mediated by the TRIM8/GPX1 axis. This suggests that down-regulation of TRIM8 expression may ameliorate I/R-induced myocardial injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9380432PMC
http://dx.doi.org/10.1080/13880209.2022.2096644DOI Listing

Publication Analysis

Top Keywords

i/r injury
12
i/r-induced myocardial
12
salb
9
salvianolic acid
8
control cells
8
i/r treatment
8
protein expression
8
myocardial injury
8
trim8 overexpression
8
overexpression promoted
8

Similar Publications

Ethnopharmacological Relevance: Acute kidney injury (AKI) is a growing worldwide health concern. Danggui Shaoyao San (DGSYS) was an frequently-used representative prescription to "promote blood and water and harmonize the body" in traditional Chinese medicine, and its underlying mechanism against AKI remains to be elucidated.

Aim Of The Study: To investigate the protective effect and potential molecular mechanism of DGSYS in alleviating AKI by network pharmacology and experiment validation.

View Article and Find Full Text PDF

Alpinetin protects against myocardial ischemia-reperfusion injury by inhibiting ferroptosis and apoptosis via mitochondrial ferritin.

Eur J Pharmacol

September 2025

Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China. Electronic address:

Purpose: Ischemia-reperfusion injury remains a major problem following myocardial infarction. Alpinetin (ALPT) has been reported to exhibit cardioprotective effects as well as resistance to ischemia-reperfusion injury. However, its role and mechanism during myocardial ischemia-reperfusion injury are unknown.

View Article and Find Full Text PDF

Decreasing H3K27me3 Alleviates Cerebral Ischemia/reperfusion Injury by Modulating FOXP1 Expression.

Free Radic Biol Med

September 2025

Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China; National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou China. Electronic address:

Elevated H3K27me3 levels during cerebral I/R injury exacerbate neuronal damage through oxidative stress, but the underlying mechanism remains to be elucidated. We hypothesized that reduced H3K27me3 confers protection by modulating FOXP1 expression. Employing multifaceted approaches, we demonstrate that H3K27me3 reduction in vivo and in vitro enhances lipid metabolism and rescues oxygen-glucose deprivation (OGD)-induced mitochondrial morphological abnormalities and functional deficits.

View Article and Find Full Text PDF

Background: Myocardial ischemia/reperfusion (I/R) injury is a common cause of death. FXYD domain-containing ion transport regulator-5 (Fxyd5) is a type I membrane protein that plays a significant role in mediating cellular functions. However, the expression and function of Fxyd5 in myocardial I/R injury remain unclear.

View Article and Find Full Text PDF