98%
921
2 minutes
20
Irg1 is an enzyme that generates itaconate, a metabolite that plays a key role in the regulation of inflammatory responses. Previous studies have implicated Irg1 as an important mediator in preventing excessive inflammation and tissue damage in () infection. Here, we investigated the pattern recognition receptors and signaling pathways by which triggers Irg1 gene expression by comparing the responses of control and genetically deficient BMDMs. Using this approach, we demonstrated partial roles for TLR-2 (but not TLR-4 or -9), MyD88 and NFκB signaling in Irg1 induction by bacilli. In addition, drug inhibition studies revealed major requirements for phagocytosis and endosomal acidification in Irg1 expression triggered by but not LPS or PAM3CSK4. Importantly, the -induced Irg1 response was highly dependent on the presence of the bacterial ESX-1 secretion system, as well as host STING and Type I IFN receptor (IFNAR) signaling with Type II IFN (IFN-γ) signaling playing only a minimal role. Based on these findings we hypothesize that induces Irg1 expression in macrophages the combination of two independent triggers both dependent on bacterial phagocytosis: 1) a major signal stimulated by phagocytized products released by an ESX-1-dependent mechanism into the cytosol where they activate the STING pathway leading to Type I-IFN production, and 2) a secondary TLR-2, MyD88 and NFκB dependent signal that enhances Irg1 production independently of Type I IFN induction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9109611 | PMC |
http://dx.doi.org/10.3389/fcimb.2022.862582 | DOI Listing |
J Virol
September 2025
Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China.
Unlabelled: Cholesterol 25-hydroxylase (CH25H), an interferon-stimulated gene (ISG), has been implicated in broad-spectrum antiviral immunity. Here, we identify CH25H as a potent suppressor of hepatitis B virus (HBV) replication that significantly outperforms IFN-α in reducing HBV DNA, pregenomic RNA (pgRNA), HBsAg, and HBeAg, without inducing cytotoxicity. However, CH25H is weakly expressed in hepatocytes and only modestly induced by type I interferon.
View Article and Find Full Text PDFCell Physiol Biochem
September 2025
Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biochemistry, 10117 Berlin, Germany.
Background/aims: The ubiquitin-like protein ISG15 and its covalent conjugation to substrates (ISGylation) represent a critical interferon (IFN)-induced antiviral mechanism. USP18 is an ISG15-specific isopeptidase and a key negative regulator of type I IFN signaling. While inactivation of USP18's catalytic activity enhances ISGylation and promotes viral resistance, its role in modulating inflammation and cardiac function during CVB3-induced myocarditis remains unclear.
View Article and Find Full Text PDFMicrob Biotechnol
September 2025
College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China.
The Brucella abortus A19 attenuated live vaccine poses potential infection risks during practical applications and interferes with serological diagnostics, thereby affecting quarantine measures and the establishment of disease-free zones. Consequently, this study aimed to reduce its potential virulence, enhance its protective efficacy and differentiate it from wild-type strains by knocking out the immunosuppressive virulence gene btpB in the A19 strain. Using homologous recombination, we successfully obtained the A19ΔBtpB deletion strain.
View Article and Find Full Text PDFCell Mol Immunol
September 2025
Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology; Taikang Center for Life and Medical Sciences; State Key Laboratory of Virology; Institute of Hepatobiliary Diseases of Wuhan University, Wuhan, Hubei, 430071,
Upon DNA virus infection, cGAS senses viral DNA and triggers MITA (also called STING)-dependent induction of type I interferons (IFN-Is) and other cytokines/chemokines. IFN-Is further activate STAT1/2 to induce interferon-stimulated genes (ISGs) and the innate antiviral response. How the innate antiviral response is silenced in uninfected cells and efficiently mounts upon viral infection is not fully understood.
View Article and Find Full Text PDFImmunol Cell Biol
September 2025
Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Sangareddy, Telangana, India.
The immune system uses a variety of DNA sensors, including endo-lysosomal Toll-like receptors 9 (TLR9) and cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS). These sensors activate immune responses by inducing the production of a variety of cytokines, including type I interferons (IFN). Activation of cGAS requires DNA-cGAS interaction.
View Article and Find Full Text PDF