Unlabelled: Three-dimensional (3D) cell culture systems have emerged as powerful tools to model tumor biology ex vivo. However, the diverse array of 3D culture methods available presents challenges in selecting the most appropriate model for specific research questions. This study provides a comparative analysis of breast cancer cells (SUM149, IBC-3, MDA-MB-468) in the mammosphere culture (SphC) model or an "emboli" culture (EmC) model, which enrich for cancer stem cells and epithelial features, respectively.
View Article and Find Full Text PDFMCL remains incurable, and patients who relapse post BTK inhibitors have poor outcomes. BsAbs and CAR T cell therapy are novel strategies to treat patients with R/R MCL. These therapies exhibit favorable outcomes and side effect profiles in a previously dismal space.
View Article and Find Full Text PDFCancers (Basel)
April 2024
B-cell non-Hodgkin's lymphoma (NHL) refers to a heterogenous group of diseases, all of which have a wide range of treatment strategies and patient outcomes. There have been multiple novel, immune-based therapies approved in NHL in the last decade, including bispecific antibodies (BsAbs) and chimeric antigen receptor therapy (CAR-T). With a host of new therapies, an important next step will be determining how these therapies should be sequenced in contemporary management strategies.
View Article and Find Full Text PDFM1 macrophages enter a glycolytic state when endogenous nitric oxide (NO) reprograms mitochondrial metabolism by limiting aconitase 2 and pyruvate dehydrogenase (PDH) activity. Here, we provide evidence that NO targets the PDH complex by using lipoate to generate nitroxyl (HNO). PDH E2-associated lipoate is modified in NO-rich macrophages while the PDH E3 enzyme, also known as dihydrolipoamide dehydrogenase (DLD), is irreversibly inhibited.
View Article and Find Full Text PDFItaconate, the product of the decarboxylation of cis-aconitate, regulates numerous biological processes. We and others have revealed itaconate as a regulator of fatty acid β-oxidation, generation of mitochondrial reactive oxygen species and the metabolic interplay between resident macrophages and tumors. In the present study, we show that itaconic acid is upregulated in human non-alcoholic steatohepatitis and a mouse model of non-alcoholic fatty liver disease.
View Article and Find Full Text PDFIrg1 is an enzyme that generates itaconate, a metabolite that plays a key role in the regulation of inflammatory responses. Previous studies have implicated Irg1 as an important mediator in preventing excessive inflammation and tissue damage in () infection. Here, we investigated the pattern recognition receptors and signaling pathways by which triggers Irg1 gene expression by comparing the responses of control and genetically deficient BMDMs.
View Article and Find Full Text PDFMyeloid-derived suppressor cells (MDSC) and tumor-associated macrophages (TAM) contribute to cancer-related inflammation and tumor progression. While several myeloid molecules have been ascribed a regulatory function in these processes, the triggering receptors expressed on myeloid cells (TREMs) have emerged as potent modulators of the innate immune response. While various TREMs amplify inflammation, others dampen it and are emerging as important players in modulating tumor progression-for instance, soluble TREM-1 (sTREM-1), which is detected during inflammation, associates with disease progression, while TREM-2 expression is associated with tumor-promoting macrophages.
View Article and Find Full Text PDFPurpose: The rho-associated coiled-coil-containing protein kinase-2 (ROCK2) signaling pathway regulates the Th17/regulatory T cells balance and controls profibrotic pathways. Selective ROCK2 inhibition with belumosudil (KD025) may offer a novel approach to the management of chronic graft-versus-host disease (cGVHD).
Patients And Methods: A phase IIa, open-label, dose-finding study of belumosudil enrolled 54 patients with cGVHD who had received one to three prior lines of therapy (LOTs).
Cancer Immunol Immunother
February 2020
A major challenge of cancer immunotherapy is the potential for undesirable effects on bystander cells and tumor-associated immune cells. Fundamentally, we need to understand what effect targeting tumor metabolism has upon the metabolism and phenotype of tumor-associated leukocytes, whose function can be critical for effective cancer therapeutic strategies. Undesirable effects of cancer therapeutics are a major reason for drug-associated toxicity, which confounds drug dosing and efficacy.
View Article and Find Full Text PDFNeutrophils are a vital component of immune protection, yet in cancer they may promote tumour progression, partly by generating reactive oxygen species (ROS) that disrupts lymphocyte functions. Metabolically, neutrophils are often discounted as purely glycolytic. Here we show that immature, c-Kit neutrophils subsets can engage in oxidative mitochondrial metabolism.
View Article and Find Full Text PDFRho-associated coiled-coil kinase (ROCK)2 targeting down-regulates autoimmune responses in animal models and patients, however the underlying molecular mechanism is still an enigma. We report that ROCK2 binds phosphorylated-STAT3 and its kinase activity controls the formation of ROCK2/STAT3/JAK2 complex and optimal STAT3 phosphorylation in human CD4 T cells during T helper 17 (TH17)-skewing. Moreover, chromatin-immunoprecipitation sequencing (ChIP-seq) analysis revealed that, genome-wide, about 70% of ROCK2 and STAT3 peaks overlapped and co-localized to several key genes controlling TH17 and T follicular helper (TFH) cell functions.
View Article and Find Full Text PDFPhagocytes are cells of the immune system that play important roles in phagocytosis, respiratory burst and degranulation-key components of innate immunity and response to infection. This diverse group of cells includes monocytes, macrophages, dendritic cells, neutrophils, eosinophils, and basophils-heterogeneous cell populations possessing cell and tissue-specific functions of which cellular metabolism comprises a critical underpinning. Core functions of phagocytic cells are diverse and sensitive to alterations in environmental- and tissue-specific nutrients and growth factors.
View Article and Find Full Text PDFReducing the activities of the pro-inflammatory cytokine IL-17 is an effective treatment strategy for several chronic autoimmune disorders. Rho-associated coiled-coil containing kinase 2 (ROCK2) is a member of the serine-threonine protein kinase family that regulates IL-17 secretion in T cells via signal transducer and activator of transcription 3 (STAT3)-dependent mechanism. We reported here that the selective ROCK2 inhibitor KD025 significantly reduced in vitro production of IL-17 in unfractionated human peripheral blood mononuclear cells (PBMCs) stimulated with the dectin-1 agonist Candida albicans.
View Article and Find Full Text PDFJ Clin Invest
August 2018
Control of cellular metabolism is critical for efficient cell function, although little is known about the interplay between cell subset-specific metabolites in situ, especially in the tumor setting. Here, we determined how a macrophage-specific (Mϕ-specific) metabolite, itaconic acid, can regulate tumor progression in the peritoneum. We show that peritoneal tumors (B16 melanoma or ID8 ovarian carcinoma) elicited a fatty acid oxidation-mediated increase in oxidative phosphorylation (OXPHOS) and glycolysis in peritoneal tissue-resident macrophages (pResMϕ).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2017
Proinflammatory signaling pathways are commonly up-regulated in breast cancer. In estrogen receptor-negative (ER) and triple-negative breast cancer (TNBC), nitric oxide synthase-2 (NOS2) and cyclooxygenase-2 (COX2) have been described as independent predictors of disease outcome. We further explore these findings by investigating the impact of their coexpression on breast cancer survival.
View Article and Find Full Text PDFTargeted inhibition of Rho-associated kinase (ROCK)2 downregulates the proinflammatory T cell response while increasing the regulatory arm of the immune response in animals models of autoimmunity and Th17-skewing human cell culture in vitro. In this study, we report that oral administration of a selective ROCK2 inhibitor, KD025, reduces psoriasis area and severity index scores by 50% from baseline in 46% of patients with psoriasis vulgaris, and it decreases epidermal thickness as well as T cell infiltration in the skin. We observed significant reductions of IL-17 and IL-23, but not IL-6 and TNF-α, whereas IL-10 levels were increased in peripheral blood of clinical responders after 12 wk of treatment with KD025.
View Article and Find Full Text PDFCancer Immunol Immunother
December 2016
NK cells play a role in many cancer immunotherapies. NK cell activity is tightly regulated by killer immunoglobulin-like receptor (KIR) and KIR-ligand interactions. Inhibitory KIR-ligands have been identified as HLA molecules, while activating KIR-ligands are largely unknown.
View Article and Find Full Text PDFInflammatory maturation of M1 macrophages by proinflammatory stimuli such as toll like receptor ligands results in profound metabolic reprogramming resulting in commitment to aerobic glycolysis as evidenced by repression of mitochondrial oxidative phosphorylation (OXPHOS) and enhanced glucose utilization. In contrast, "alternatively activated" macrophages adopt a metabolic program dominated by fatty acid-fueled OXPHOS. Despite the known importance of these developmental stages on the qualitative aspects of an inflammatory response, relatively little is know regarding the regulation of these metabolic adjustments.
View Article and Find Full Text PDFRho-associated kinase 2 (ROCK2) determines the balance between human T helper 17 (TH17) cells and regulatory T (Treg) cells. We investigated its role in the generation of T follicular helper (TFH) cells, which help to generate antibody-producing B cells under normal and autoimmune conditions. Inhibiting ROCK2 in normal human T cells or peripheral blood mononuclear cells from patients with active systemic lupus erythematosus (SLE) decreased the number and function of TFH cells induced by activation ex vivo.
View Article and Find Full Text PDFPancreatic cancer is one of the most lethal malignancies and is refractory to the available treatments. Pancreatic ductal adenocarcinoma (PDAC) expresses high level of inducible nitric oxide synthase (NOS2), which causes sustained production of nitric oxide (NO). We tested the hypothesis that an aberrantly increased NO-release enhances the development and progression of PDAC.
View Article and Find Full Text PDFChronic graft-versus-host disease (cGVHD) remains a major complication following allogeneic bone marrow transplantation (BMT). The discovery of novel therapeutics is dependent on assessment in preclinical murine models of cGVHD. Rho-associated kinase 2 (ROCK2) recently was shown to be implicated in regulation of interleukin-21 (IL-21) and IL-17 secretion in mice and humans.
View Article and Find Full Text PDFHealth Aff (Millwood)
February 2016
Since the mid-2000s low- and lower-middle-income countries have been focusing on developing and using evidence for immunization policy making, with an increasing emphasis on cost-effectiveness analysis, program costing, and financial flows-particularly for the introduction of newer, more expensive vaccines. While this is critical to informing decisions, countries still need to increase national immunization investment and explore innovative approaches to augment financing of immunization programs. The need for increased financing is especially strong in countries transitioning from support by Gavi, the Vaccine Alliance.
View Article and Find Full Text PDFMonocyte chemoattractant protein-1 (MCP-1)/CCL2 plays an important role in the initiation and progression of cancer. We previously reported that in 4T1 murine breast cancer, non-tumor stromal cells, including macrophages, were the major source of MCP-1. In the present study, we analyzed the potential mechanisms by which MCP-1 is upregulated in macrophages infiltrating 4T1 tumors.
View Article and Find Full Text PDFChemokines and chemokine receptors have critical roles in cancer metastasis and have emerged as one of the targeting options in cancer therapy. However, the treatment efficacy on both tumor and host compartments needs to be carefully evaluated. Here we report that targeting CXCR3 decreased tumor cell migration and at the same time improved host anti-tumor immunity.
View Article and Find Full Text PDF