Publications by authors named "Eduardo P Amaral"

SARS-CoV-2 can cause a variety of post-acute sequelae including Long COVID19 (LC), a complex, multisystem disease characterized by a broad range of symptoms including fatigue, cognitive impairment, and post-exertional malaise. The pathogenesis of LC is incompletely understood. In this study, we performed comprehensive cellular and transcriptional immunometabolic profiling within a cohort that included SARS-CoV-2-naïve controls (NC, N=30) and individuals with prior COVID-19 (~4-months) who fully recovered (RC, N=38) or went on to experience Long COVID symptoms (N=58).

View Article and Find Full Text PDF

In murine models of visceral leishmaniasis (VL), the parasitization of resident Kupffer cells (resKCs) drives early Leishmania infantum growth in the liver, leading to granuloma formation and subsequent parasite control. Using the chronic VL model, we demonstrate that polyclonal resKCs redistributed to form granulomas outside the sinusoids, creating an open sinusoidal niche that was gradually repopulated by monocyte-derived KCs (moKCs) acquiring a tissue specific, homeostatic profile. Early-stage granulomas predominantly consisted of CLEC4FKCs.

View Article and Find Full Text PDF

Severity of COVID-19 is affected by multiple factors; however, it is not understood how the inflammatory milieu of the lung at the time of SARS-CoV-2 exposure affects the control of viral replication. Here, we demonstrate that immune events in the mouse lung closely preceding SARS-CoV-2 infection affect viral control and identify innate immune pathways that limit viral replication. Pulmonary inflammatory stimuli including resolved, antecedent respiratory infections with or influenza, ongoing pulmonary infection, ovalbumin/alum-induced asthma, or airway administration of TLR ligands and recombinant cytokines all establish an antiviral state in the lung that restricts SARS-CoV-2 replication.

View Article and Find Full Text PDF
Article Synopsis
  • Research on visceral leishmaniasis (VL) in mouse models shows that resident Kupffer cells (resKCs) initially support parasite growth in the liver, leading to granuloma formation for controlling the infection.
  • In chronic VL, the death and migration of resKCs create an open niche filled by monocyte-derived Kupffer cells (moKCs), indicating a shift in immune response as granulomas evolve.
  • The study highlights the importance of macrophage diversity, including both resKC-derived and moKCs, in managing inflammation and immune responses during VL progression.
View Article and Find Full Text PDF

Despite major global efforts to eliminate tuberculosis, which is caused by (Mtb), this disease remains as a major plague of humanity. Several factors associated with the host and Mtb interaction favor the infection establishment and/or determine disease progression. The Early Secreted Antigenic Target 6 kDa (ESAT-6) is one of the most important and well-studied mycobacterial virulence factors.

View Article and Find Full Text PDF

SARS-CoV-2 infection leads to vastly divergent clinical outcomes ranging from asymptomatic infection to fatal disease. Co-morbidities, sex, age, host genetics and vaccine status are known to affect disease severity. Yet, how the inflammatory milieu of the lung at the time of SARS-CoV-2 exposure impacts the control of viral replication remains poorly understood.

View Article and Find Full Text PDF

Type-1 and type-3 interferons (IFNs) are important for control of viral replication; however, less is known about the role of Type-2 IFN (IFNγ) in anti-viral immunity. We previously observed that lung infection with Mycobacterium bovis BCG achieved though intravenous (iv) administration provides strong protection against SARS-CoV-2 in mice yet drives low levels of type-1 IFNs but robust IFNγ. Here we examine the role of ongoing IFNγ responses to pre-established bacterial infection on SARS-CoV-2 disease outcomes in two murine models.

View Article and Find Full Text PDF

Oxidative stress triggers ferroptosis, a form of cellular necrosis characterized by iron-dependent lipid peroxidation, and has been implicated in Mycobacterium tuberculosis (Mtb) pathogenesis. We investigated whether Bach1, a transcription factor that represses multiple antioxidant genes, regulates host resistance to Mtb. We found that BACH1 expression is associated clinically with active pulmonary tuberculosis.

View Article and Find Full Text PDF

Viral co-infections have been implicated in worsening tuberculosis (TB) and during the COVID-19 pandemic, the global rate of TB-related deaths has increased for the first time in over a decade. We and others have previously shown that a resolved prior or concurrent influenza A virus infection in ()-infected mice resulted in increased pulmonary bacterial burden, partly through type I interferon (IFN-I)-dependent mechanisms. Here we investigated whether SARS-CoV-2 (SCV2) co-infection could also negatively affect bacterial control of .

View Article and Find Full Text PDF

Tuberculosis (TB) is a lethal disease and remains one of the top ten causes of mortality by an infectious disease worldwide. It can also result in significant morbidity related to persistent inflammation and tissue damage. Pulmonary TB treatment depends on the prolonged use of multiple drugs ranging from 6 months for drug-susceptible TB to 6-20 months in cases of multi-drug resistant disease, with limited patient tolerance resulting from side effects.

View Article and Find Full Text PDF

Cellular necrosis during Mycobacterium tuberculosis (Mtb) infection promotes both immunopathology and bacterial dissemination. Glutathione peroxidase-4 (Gpx4) is an enzyme that plays a critical role in preventing iron-dependent lipid peroxidation-mediated cell death (ferroptosis), a process previously implicated in the necrotic pathology seen in Mtb-infected mice. Here, we document altered GPX4 expression, glutathione levels, and lipid peroxidation in patients with active tuberculosis and assess the role of this pathway in mice genetically deficient in or overexpressing Gpx4.

View Article and Find Full Text PDF

Irg1 is an enzyme that generates itaconate, a metabolite that plays a key role in the regulation of inflammatory responses. Previous studies have implicated Irg1 as an important mediator in preventing excessive inflammation and tissue damage in () infection. Here, we investigated the pattern recognition receptors and signaling pathways by which triggers Irg1 gene expression by comparing the responses of control and genetically deficient BMDMs.

View Article and Find Full Text PDF

The poor outcome of the coronavirus disease-2019 (COVID-19), caused by SARS-CoV-2, is associated with systemic hyperinflammatory response and immunopathology. Although inflammasome and oxidative stress have independently been implicated in COVID-19, it is poorly understood whether these two pathways cooperatively contribute to disease severity. Herein, we found an enrichment of CD14CD16 monocytes displaying inflammasome activation evidenced by caspase-1/ASC-speck formation in severe COVID-19 patients when compared to mild ones and healthy controls, respectively.

View Article and Find Full Text PDF
Article Synopsis
  • Ferroptosis is a unique type of regulated cell death characterized by toxic lipid peroxides and is significant in various diseases.
  • An imbalance between free radicals and antioxidants contributes to the severity of several conditions, potentially leading to organ failure through necro-inflammatory responses.
  • This review explores how ferroptosis and other forms of necrotic cell death are influenced by oxidative stress and antioxidants, affecting disease progression and pathogen spread.
View Article and Find Full Text PDF
Article Synopsis
  • Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), poses a global health challenge due to the absence of a strong vaccine and the prolonged antibiotic treatment required for curing the disease.
  • Research is exploring combined immuno/chemotherapeutic approaches, particularly focusing on enhancing CD4 T cell responses to improve antibiotic effectiveness against Mtb.
  • Recent studies indicated that attempts to boost CD4 T cell responses during antibiotic treatment, such as through IL-12 infusion and specific immunizations, did not enhance the clearance of Mtb, suggesting that this method may not be effective in the early stages of treatment.
View Article and Find Full Text PDF

The risk of developing severe forms of tuberculosis has increased by the acquired immunodeficiency syndrome (AIDS) epidemic, lack of effective drugs to eliminate latent infection and the emergence of drug-resistant mycobacterial strains. Excessive inflammatory response and tissue damage associated with severe tuberculosis contribute to poor outcome of the disease. Our previous studies using mice deficient in the ATP-gated ionotropic P2X7 receptor suggested this molecule as a promising target for host-directed therapy in severe pulmonary tuberculosis.

View Article and Find Full Text PDF
Article Synopsis
  • IL-1β and IL-18 cytokines, along with the complement cascade, are linked to tuberculosis-immune reconstitution inflammatory syndrome (TB-IRIS) that affects HIV+ individuals starting antiretroviral therapy (ART).
  • A study showed that TB-IRIS patients exhibit increased activation of the NLRP3 inflammasome in monocytes, with higher caspase-1/4/5 and ASC speck formation compared to TB non-IRIS patients, indicating a heightened inflammatory response.
  • The findings suggest that complement-associated inflammasome activation may drive the excessive inflammation in TB-IRIS, proposing that targeting this pathway could offer new therapeutic options for treating this condition.
View Article and Find Full Text PDF

Tuberculosis (TB) still causes significant morbidity and mortality worldwide, especially in persons living with human immunodeficiency virus (HIV). This disease is hallmarked by persistent oxidative stress and systemic inflammation. N-acetylcysteine (NAC), a glutathione (GSH) precursor, has been shown in experimental models to limit infection and disease both by suppression of the host oxidative response and through direct antimicrobial activity.

View Article and Find Full Text PDF

Heme oxygenase-1 (HO-1) catalyzes the degradation of heme molecules releasing equimolar amounts of biliverdin, iron and carbon monoxide. Its expression is induced in response to stress signals such as reactive oxygen species and inflammatory mediators with antioxidant, anti-inflammatory and immunosuppressive consequences for the host. Interestingly, several intracellular pathogens responsible for major human diseases have been shown to be powerful inducers of HO-1 expression in both host cells and in vivo.

View Article and Find Full Text PDF
Article Synopsis
  • * A specific genetic variant, rs10754558, protects against TB by enhancing the immune response through the NLRP3 inflammasome, which plays a crucial role in how the body reacts to different strains of Mtb.
  • * The study reveals that loss-of-function variants are linked to extra-pulmonary TB, and the activation levels of the inflammasome can differentiate between TB patients and healthy individuals in endemic areas, highlighting genetic and immune responses in TB susceptibility.
View Article and Find Full Text PDF

Mycobacterium tuberculosis (Mtb) infection induces pulmonary expression of the heme-degrading enzyme heme oxygenase-1 (HO-1). We have previously shown that pharmacological inhibition of HO-1 activity in experimental tuberculosis results in decreased bacterial loads and unexpectedly that this outcome depends on the presence of T lymphocytes. Here, we extend these findings by demonstrating that IFNγ production by T lymphocytes and NOS2 expression underlie this T-cell requirement and that HO-1 inhibition potentiates IFNγ-induced NOS2-dependent control of Mtb by macrophages in vitro.

View Article and Find Full Text PDF

Despite the availability of effective antimicrobials, tuberculosis (TB) is still a serious health threat. Mortality is even higher in people living with HIV who are diagnosed with TB. New therapies are needed to shorten the time required to cure TB and decrease fatality rates in this population.

View Article and Find Full Text PDF

Excessive and prolonged proinflammatory responses are associated with oxidative stress, which is commonly observed during chronic tuberculosis (TB). Such condition favors tissue destruction and consequently bacterial spread. A tissue remodeling program is also triggered in chronically inflamed sites, facilitating a wide spectrum of clinical manifestations.

View Article and Find Full Text PDF

Malaria causes hepatic inflammation and damage, which contribute to disease severity. The pro-inflammatory cytokine interleukin (IL)-1α is released by non-hematopoietic or hematopoietic cells during liver injury. This study established the role of IL-1α in the liver pathology caused by blood-stage P.

View Article and Find Full Text PDF

Necrotic cell death during (Mtb) infection is considered host detrimental since it facilitates mycobacterial spread. Ferroptosis is a type of regulated necrosis induced by accumulation of free iron and toxic lipid peroxides. We observed that Mtb-induced macrophage necrosis is associated with reduced levels of glutathione and glutathione peroxidase-4 (Gpx4), along with increased free iron, mitochondrial superoxide, and lipid peroxidation, all of which are important hallmarks of ferroptosis.

View Article and Find Full Text PDF