Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study aims to explore the toxicity mechanism of Rhododendri Mollis Flos(RMF) based on serum metabolomics and network toxicology. The toxic effect of RMF on normal rats was evaluated according to the symptoms, serum biochemical indexes, and histopathology. Serum metabolomics was combined with multivariate statistical analysis to search endogenous differential metabolites and related metabolic pathways. The toxic components, targets, and signaling pathways of RMF were screened by network toxicology technique, and the component-target-metabolite-metabolic pathway network was established with the help of serum metabolomics. The result suggested the neurotoxicity, hepatotoxicity, and cardiotoxicity of RMF. A total of 31 differential metabolites and 10 main metabolic pathways were identified by serum metabolomics, and 11 toxic components, 332 related target genes and 141 main signaling pathways were screened out by network toxicology. Further analysis yielded 7 key toxic components: grayanotoxin Ⅲ,grayanotoxinⅠ, rhodojaponin Ⅱ, rhodojaponin Ⅴ, rhodojaponin Ⅵ, rhodojaponin Ⅶ, and kalmanol, which acted on the following 12 key targets: androgen receptor(AR), albumin(ALB), estrogen receptor β(ESR2), sex-hormone binding globulin(SHBG), type 11 hydroxysteroid(17-beta) dehydrogenase(HSD17 B11), estrogen receptor α(ESR1), retinoic X receptor-gamma(RXRG), lactate dehydrogenase type C(LDHC), Aldo-keto reductase(AKR) 1 C family member 3(AKR1 C3), ATP binding cassette subfamily B member 1(ABCB1), UDP-glucuronosyltransferase 2 B7(UGT2 B7), and glutamate-ammonia ligase(GLUL). These targets interfered with the metabolism of gamma-aminobutyric acid, estriol, testosterone, retinoic acid, 2-oxobutyric acid, and affected 4 key metabolic pathways of alanine, aspartate and glutamate metabolism, cysteine and methionine metabolism, steroid hormone biosynthesis, and retinol metabolism. RMF exerts toxic effect on multiple systems through multiple components, targets, and pathways. Through the analysis of key toxic components, target genes, metabolites, and metabolic pathways, this study unveiled the mechanism of potential neurotoxicity, cardiotoxicity, and hepatotoxicity of RMF, which is expected to provide a clue for the basic research on toxic Chinese medicinals.

Download full-text PDF

Source
http://dx.doi.org/10.19540/j.cnki.cjcmm.20211223.702DOI Listing

Publication Analysis

Top Keywords

serum metabolomics
20
metabolic pathways
16
toxic components
16
network toxicology
12
mechanism rhododendri
8
rhododendri mollis
8
based serum
8
metabolomics network
8
differential metabolites
8
metabolites metabolic
8

Similar Publications

Background: Several clinical studies have demonstrated that Helicobacter pylori (Hp) infection may exacerbate the progression of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD); however, the underlying mechanisms remain unclear. This study aims to investigate the characterization of the gastric microbiome and metabolome in relation to the progression of MASLD induced by Hp infection.

Methods: We established a high-fat diet (HFD) obese mouse model, both with and without Hp infection, to compare alterations in serum and liver metabolic phenotypes.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Fujian Tablet (FJT), a traditional Chinese herbal compound formulation developed under the theoretical framework of "nourishing the liver and kidney, replenishing essence and marrow" , has been clinically applied for over two decades to treat post-stroke neurological deficits. Preliminary studies demonstrated its efficacy in improving motor function and promoting cervical spinal cord neuroaxonal growth in a middle cerebral artery occlusion (MCAO) rat model. Building upon these findings, this study integrates metabolomic evidence of Foxo3a-GPX4 axis activation to systematically elucidate Fujian Tablet's neurorestorative mechanisms through three interconnected pathways: regulation of ferroptosis, promotion of oligodendrocyte proliferation, and remyelination.

View Article and Find Full Text PDF

Background: A plant-focused, healthy dietary pattern, such as the Mediterranean diet enriched with dietary fiber, polyphenols, and polyunsaturated fats, is well known to positively influence the gut microbiota. Conversely, a processed diet high in saturated fats and sugars negatively impacts gut diversity, potentially leading to weight gain, insulin resistance, and chronic, low-grade inflammation. Despite this understanding, the mechanisms by which the Mediterranean diet impacts the gut microbiota and its associated health benefits remain unclear.

View Article and Find Full Text PDF

The renoprotective anti-hyperuricemia effect of Cornus officinalis extract in hyperuricemia rats based on network pharmacology and multiple omics.

J Ethnopharmacol

September 2025

Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; Institute of Integrative Medicine, Hunan Provincial Key Laboratory of Liver Visceral Manifestation in Traditional Chinese Medicine, Department of Integrated Traditio

Ethnopharmacological Relevance: Corus officinalis Siebold & Zucc belongs to the genus Cornus in the Cornaceae family, and was first recorded in the "Shennong Herbal Classic", now has been included in "according to the tradition of both food and Chinese herbal medicines", consist of kidney and liver tonifying, antioxidant substances including cycloid glycosides, flavonoids, polyphenols, organic acids, etc. AIM OF THE STUDY: This study was aimed at discovering the mechanism underlying the anti-hyperemia effect of Cor in rats, particularly its protective effect against liver and kidney dysfunction caused by HUA.

Materials And Methods: In this study, the effect of Cor extract against HUA was verified in rats, subsequently, network pharmacology combined with non-targeted metabolomic were performed to investigate its composition characteristics, and further multi-omics studies and molecular validation were performed to reveal molecular mechanism both in vivo and in vitro.

View Article and Find Full Text PDF

Integrative blood transcriptomic and metabolomic profiling reveals biomarkers of natural heat tolerance in Holstein cows.

J Dairy Sci

September 2025

Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China. Electronic address:

Heat stress poses a major threat to dairy cattle productivity, particularly in high-producing Holstein cows. To identify robust biomarkers of thermotolerance, we employed an integrative strategy combining physiological phenotyping, blood metabolite profiling, and transcriptomic analysis. A total of 120 lactating Holstein cows were evaluated under natural summer heat conditions using rectal temperature, respiratory rate, salivation index, serum HSP70, cortisol, potassium levels, and milk production.

View Article and Find Full Text PDF