Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

N-Doped carbon electrocatalysts are a promising alternative to precious metal catalysts to promote oxygen reduction reaction (ORR). However, it remains a challenge to design the desired active sites on carbon skeletons in a controllable manner for ORR. Herein, we developed a facile approach based on oxygen-mediated solvothermal radical reaction (OSRR) for preparation of N-doped carbon electrocatalysts with a pre-designed active site and modulated catalytic activity for ORR. In the OSRR, 2-methylimidazole reacted with Co and Mn salts to form an active site precursor (MnCo-MIm) in N-methyl-2-pyrrolidone (NMP) at room temperature. Then, the reaction temperature increased to 140 °C under an oxygen atmosphere to generate NMP radicals, followed by their polymerization with the pre-formed MnCo-MIm to produce Mn-coupled Co nanoparticle-embedded N-doped carbon framework (MnCo-NCF). The MnCo-NCF showed uniform dispersion of nitrogen atoms and Mn-doped Co nanoparticles on the carbon skeleton with micropores and mesopores. The MnCo-NCF exhibited higher electrocatalytic activity for ORR than did a Co nanoparticle only-incorporated carbon framework due to the improved charge transfer from the Mn-doped Co nanoparticles to the carbon skeleton. In addition, the Zn-air battery assembled with MnCo-NCF had superior performance and durability to the battery using commercial Pt/C. This facile approach can be extended for designing carbon electrocatalysts with desired active sites to promote specific reactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9005593PMC
http://dx.doi.org/10.1186/s40580-022-00308-8DOI Listing

Publication Analysis

Top Keywords

n-doped carbon
16
carbon electrocatalysts
12
carbon
9
electrocatalytic activity
8
desired active
8
active sites
8
facile approach
8
active site
8
activity orr
8
carbon framework
8

Similar Publications

A new variety of nitrogen-doped carbon dots (NCDs) was produced using a hydrothermal synthesis method, based on propanedioic acid and barbituric acid as the sources of carbon and nitrogen. The NCDs were analyzed by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Zeta Potential,X-ray Diffraction(XRD),Thermogravimetry-Derivative Thermogravimetry(TG-DTG),Fourier transform infrared spectroscopy (FTIR) and Fluorescence Lifetime. The characterization results indicate that NCDs possess an average diameter of approximately 2.

View Article and Find Full Text PDF

The polysulfide shuttling and sluggish sulfur redox kinetics hinder the commercialization of lithium-sulfur (Li-S) batteries. Herein, the fabrication of phosphorus (P)-doped iron telluride (FeTe) nanoparticles with engineered Te vacancies anchored on nitrogen (N)-doped carbon (C) (P-FeTe@NC) is presented as a multifunctional sulfur host. Theoretical and experimental analyses show that Te vacancies create electron-deficient Fe sites, which chemically anchor polysulfides through enhanced Fe─S covalent interactions.

View Article and Find Full Text PDF

Caffeic acid is a key indicator of wine quality, but its sensitive and accurate detection remains challenging due to the lack of high-performance sensing materials. Metal/N-doped porous carbon (M/NPC) electrocatalysts with abundant catalytic sites are promising to address this issue. Herein, a FeCo nanoalloy encapsulated in NPC (FeCo@NPC) was designed and synthesized via a "covalent organic framework (COF) adsorption-pyrolysis" strategy.

View Article and Find Full Text PDF

Stimuli-activable hollow CuO@C/N doped paste for the prevention of white spot lesions in orthodontic treatments.

Colloids Surf B Biointerfaces

August 2025

School of Stomatology, Qingdao University, Qingdao 266023, PR China; Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China.

White spot lesions (WSLs) are the most common complication of orthodontic treatment, compromising dental health and significantly affecting aesthetics. To address this clinical challenge, this study aims to develop a dual-functional therapeutic strategy that simultaneously promotes the remineralization of demineralized enamel and inhibits the activity of cariogenic bacteria, thereby achieving effective prevention and treatment of WSLs. A hollow double-shell structured CuO@N/C nanozyme (H-CuO@N/C) was synthesized using a one-step hydrothermal method.

View Article and Find Full Text PDF

N-doped carbon nanomaterials (NCMs) have attracted significant interest as metal-free nanozymes for sensing due to their exceptional stability and biocompatibility. However, the controversial active sites and catalytic pathways severely hinder the application of NCM-based nanozymes. Here, postsynthetic modification methods have been developed to study the catalytic mechanism, including selective deactivation, chemical grafting, and surface doping.

View Article and Find Full Text PDF