Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The electrical-to-optical power conversion efficiencies of the light-emitting devices based on gallium nitride (GaN) are seriously limited by electron leakage currents due to the relatively low mobility and activation ratio of holes. However, there have been few theoretical models on the behavior of the leakage current with an increasing total current. We develop an Ohmic-law-like method to describe the transport behaviors of the systems with electron and hole currents simultaneously. Based on reasonable assumptions, the ratio of the leakage current to the total current is related to the differential resistances of the devices. Through the method, we develop analytical models of the leakage currents in GaN-based laser diodes (LDs) and light-emitting diodes (LEDs). The ratios of the leakage currents with total currents in LDs and LEDs are shown to increase, which explains the sublinear behaviors of the luminescence-current (LI) curves of the devices. The theory agrees well with the numerical simulation and experimental results in larger current ranges in comparison to the traditional ABC model. The above analytical model can be used to fast evaluate the leakage currents in GaN-based LDs and LEDs.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.446398DOI Listing

Publication Analysis

Top Keywords

leakage currents
20
analytical models
8
electron leakage
8
laser diodes
8
light-emitting diodes
8
leakage current
8
total current
8
currents gan-based
8
lds leds
8
leakage
7

Similar Publications

Life cycle toxicity and reduction potential analysis of perovskite photovoltaic technology.

J Environ Manage

September 2025

Institute of Blue and Green Development, Shandong University, Weihai, 264209, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810016, China. Electronic address:

Perovskite solar cells (PSCs), an emerging photovoltaic technology promising lower cost and higher efficiency, have been developed rapidly. However, the widespread use of lead in current PSCs raises toxicity concerns, prompting interest in lead-free alternatives. Despite this, comprehensive life cycle assessments of toxicity impacts across PSC types remain limited, potentially leading to biased technology choices and environmental harm.

View Article and Find Full Text PDF

Unifying Vascular Injury and Neurodegeneration: A Mechanistic Continuum in Cerebral Small Vessel Disease and Dementia.

Eur J Neurosci

September 2025

Global Health Neurology Lab, Sydney, New South Wales, Australia.

Cerebral small vessel disease (CSVD) is a major yet underappreciated driver of cognitive impairment and dementia, contributing to nearly half of all cases. Emerging evidence indicates that CSVD is not merely a coexisting vascular condition but an active amplifier of neurodegeneration, operating through a self-perpetuating cascade of microvascular injury, blood-brain barrier (BBB) breakdown, and glymphatic system dysfunction. In this hypothesis-driven review, we propose the Integrated Vascular-Neurodegenerative Continuum, a mechanistic model in which vascular pathology triggers and accelerates neurodegeneration via intersecting pathways, including chronic cerebral hypoperfusion, oxidative stress, and APOE ε4-associated endothelial vulnerability.

View Article and Find Full Text PDF

Marine organism-inspired tough and adhesive patch based on thermosensitive quaternized chitin for tissue sealing/repair and hemostasis.

Carbohydr Polym

November 2025

Key Laboratory of Biomedical Polymers, Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China. Electronic address:

Tissue adhesives have emerged as a promising alternative to conventional sutures and staplers in the management of hemostasis, tissue defect sealing, and wound repair. However, the efficacy of current bio-adhesives in clinical practice is compromised by the limitations, including poor wet adhesion, inadequate mechanical strength, vulnerability to gastrointestinal fluids, and insufficient hemostatic performance. Herein, a marine organism-inspired tough and adhesive patch (MOTAP) was developed to address these challenges.

View Article and Find Full Text PDF

A novel P-type Buried Layer Diode-Triggered Silicon-Controlled Rectifier (PBL-DTSCR) with predicted good performance in electrostatic discharge (ESD) protection is proposed in this work. With P-type ESD implantations and silicide blocking layers applied to this novel structure, the efficiency of the diode triggering path is greatly improved, thus enhancing the discharge efficiency of the main path. Moreover, the parasitic SCR path is minimized by replacing the PNPN structure in conventional DTSCR to PNPNPN structure in PBL-DTSCR.

View Article and Find Full Text PDF

A nanometer-scale multilayer gate insulator (GI) engineering strategy is introduced to simultaneously enhance the on-current and bias stability of amorphous InGaZnO thin-film transistors (a-IGZO TFTs). Atomic layer deposition supercycle modifications employ alternating layers of AlO, TiO, and SiO to optimize the gate-oxide stack. Each GI material is strategically selected for complementary functionalities: AlO improves the interfacial quality at both the GI/semiconductor and GI/metal interfaces, thereby enhancing device stability and performance; TiO increases the overall dielectric constant; and SiO suppresses leakage current by serving as a high-energy barrier between AlO and TiO.

View Article and Find Full Text PDF