98%
921
2 minutes
20
DNA damage-inducible transcript 4 (DDIT4) is induced in various cellular stress conditions. This study was conducted to investigate expression and prognostic significance of DDIT4 protein as a biomarker in the patients with colorectal cancer (CRC). PPI network and KEGG pathway analysis were applied to identify hub genes among obtained differentially expressed genes in CRC tissues from three GEO Series. In clinical, expression of DDIT4 as one of hub genes in three subcellular locations was evaluated in 198 CRC tissues using immunohistochemistry method on tissue microarrays. The association between DDIT4 expression and clinicopathological features as well as survival outcomes were analyzed. Results of bioinformatics analysis indicated 14 hub genes enriched in significant pathways according to KEGG pathways analysis among which DDIT4 was selected to evaluate CRC tissues. Overexpression of nuclear DDIT4 protein was found in CRC tissues compared to adjacent normal tissues (P = 0.003). Furthermore, higher nuclear expression of DDIT4 was found to be significantly associated with the reduced tumor differentiation and advanced TNM stages (all, P = 0.009). No significant association was observed between survival outcomes and nuclear expression of DDIT4 in CRC cases. Our findings indicated higher nuclear expression of DDIT4 was significantly associated with more aggressive tumor behavior and more advanced stage of disease in the patients with CRC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8249407 | PMC |
http://dx.doi.org/10.1038/s41598-021-92720-z | DOI Listing |
Abdom Radiol (NY)
September 2025
Department of Gastroenterology department, Bishan Hospital of Chongqing Medical University, Chongqing, China.
Objective: This study aimed to create and validate a nomogram to predict early recurrence (ER) in Colorectal cancer (CRC) patients by combining CT-derived abdominal fat parameters with clinical and pathological characteristics.
Methods: We conducted a retrospective analysis of 206 CRC patients, dividing them into training (n = 146) and validation (n = 60) cohorts. We quantified abdominal fat parameters, including subcutaneous adipose tissue index (SATI) and visceral adipose tissue index (VATI), using semi-automatic software on CT images at the level of the third lumbar vertebra (L3).
Acta Biochim Biophys Sin (Shanghai)
September 2025
State Key Laboratory of Analytical Chemistry for Life Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China.
Dysregulated transcription factors critically link chronic inflammation to oncogenesis in colitis-associated colorectal cancer (CAC), but their mechanistic roles remain incompletely understood. By integrating microarray and transcriptome sequencing data from ulcerative colitis (UC), colitis-associated cancer (CAC), and colorectal cancer (CRC) patients, we identify C/EBPβ as a key transcriptional regulator whose elevated expression inversely correlates with survival. In azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced CAC models, intestinal epithelial C/EBPβ is upregulated during tumor progression, which is correlated with exacerbated tumor burden and neutrophil infiltration.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
September 2025
Department of General Surgery, Tianzhu County People's Hospital, Qiandongnan, Guizhou 556699, China.
Colorectal cancer (CRC) remains one of the most lethal malignancies globally, driven by complex molecular mechanisms that contribute to its progression and metastasis. This study focuses on the role of N1-methyladenosine (mA) RNA methylation in CRC, particularly its effect on Rab Interacting Lysosomal Protein-Like 1 (RILPL1) expression and the downstream activation of the CaMKII/CREB signaling pathway. Bioinformatics analysis identified RILPL1 as a key gene associated with poor CRC prognosis, exhibiting increased expression levels in cancerous tissues, with further elevation in metastatic samples.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
College of Chemistry and Molecular Sciences, Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, P.R. China.
Peptide-based biosensors are widely used for in vitro detection of protease activity but often suffer from the limited sensitivity, poor accuracy, and incompatibility with point-of-care testing (POCT) devices. Herein, we developed a versatile deoxyribozyme (DNAzyme)-amplified protease-sensing (DP) platform that integrates the positively charged oligopeptides with a negatively charged DNAzyme biocatalyst for highly-sensitive protease detection. The system leverages the electrostatic peptide-DNAzyme interactions to inhibit DNAzyme catalytic activity, which is reactivated upon the protease-triggered peptide hydrolysis, thus enabling an efficient signal amplification via the successive cleavage of DNAzyme substrate.
View Article and Find Full Text PDFTissue microenvironment characteristics associated with elevated risk of colorectal cancer (CRC) in Lynch syndrome (LS) are poorly characterized. We applied the multimodal single cell sequencing platform ExCITE-seq to define the colonic cellular composition and transcriptome of LS carriers with and without a history of CRC compared with general population controls. Our analysis revealed widespread remodeling in LS that included striking expansion of epithelial stem and progenitor cells, and loss of fibroblast populations.
View Article and Find Full Text PDF