98%
921
2 minutes
20
Setting time and mechanical properties are key metrics needed to assess the properties of municipal solid waste incineration (MSWI) bottom ash alkali-activated samples. This study investigated the solidification law, polymerization, and strength development mechanism in response to NaOH and liquid sodium silicate addition. Scanning electron microscopy and X-ray diffraction were used to identify the formation rules of polymerization products and the mechanism of the underlying polymerization reaction under different excitation conditions. The results identify a strongly alkaline environment as the key factor for the dissolution of active substances as well as for the formation of polymerization products. The self-condensation reaction of liquid sodium silicate in the supersaturated state (caused by the loss of free water) is the major reason for the rapid coagulation of alkali-activated samples. The combination of both NaOH and liquid sodium silicate achieves the optimal effect, because they play a compatible coupling role.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8069498 | PMC |
http://dx.doi.org/10.3390/ma14081927 | DOI Listing |
Food Chem X
August 2025
School of Life Science, Anqing Normal University, Jixian North Road1318, Yixiu District, Anqing 246052, Anhui Province, China.
Frozen storage deteriorates the texture and digestibility of frozen rice dough by damaging gliadin structure and starch integrity. This study investigated carboxymethyl chitosan (CMCh) and sodium carboxymethyl cellulose (CMCNa) as cry-oprotectants to mitigate these effects. Comprehensive analysis utilizing nuclear magnetic resonance (NMR), texture profile analysis (TPA), dynamic contact angle measurement (DCAT21), reversed-phase high-performance liquid chromatography (RP-HPLC), and circular dichroism (CD) demonstrated that 1.
View Article and Find Full Text PDFVet World
July 2025
Laboratory of Immunochemistry and Immunobiotechnology, National Center for Biotechnology, 010000, Astana, Kazakhstan.
Background And Aim: Bovine babesiosis, caused by , poses significant economic challenges to Kazakhstan's cattle industry. Early and accurate detection is crucial for interrupting transmission cycles, particularly in regions lacking advanced diagnostic infrastructure. This study aimed to develop a rapid lateral flow immunoassay (LFIA) using a recombinant C-terminal fragment of the recombinant rhoptry-associated protein 1 (rRap1) antigen for the serodiagnosis of bovine babesiosis.
View Article and Find Full Text PDFJ Phys Chem B
September 2025
Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China.
Understanding hydrogen bonding and ion-specific interactions in water, sodium sulfate (NaSO), and acetonitrile (ACN) systems remains challenging due to their complex, dynamic nature. Here, Raman spectroscopy is employed to probe hydrogen bonding networks and ion reorganization in NaSO aqueous solutions with different ACN concentrations. The results indicate that, at low ACN concentrations in the ternary solutions, hydrogen bonding between ACN and water molecules disrupts the original hydration structure of the ions, resulting in the formation of small ion clusters via electrostatic interactions.
View Article and Find Full Text PDFTop Magn Reson Imaging
October 2025
BIOSPACE LAB, Nesles-la-Vallée, France.
Aims: Cardiac tumors are aggressive and asymptomatic in early stages, causing late diagnosis and locoregional metastasis. Currently, the standard of care uses gadolinium-based contrast agents for MRI, and the associated hypersensitivity reactions are a significant concern, such as gadolinium deposition disease. In addition, the proximity of cardiac lesions closer to vital structures complicates surgical interventions.
View Article and Find Full Text PDFAdv Mater
September 2025
College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China.
Formic acid (FA) has attracted significant interest as a renewable liquid-phase hydrogen carrier. Hydrogen generation from FA decomposition is essential for the development of hydrogen economy. Designing highly efficient catalysts with different coordination environments for FA dehydrogenation is crucial for fuel-cell applications.
View Article and Find Full Text PDF