Individuality, self and sociality of vascular plants.

Philos Trans R Soc Lond B Biol Sci

Department of Agrifood Production and Environmental Sciences, University of Florence, Florence, Italy.

Published: March 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Vascular plants are integrated into coherent bodies via plant-specific synaptic adhesion domains, action potentials (APs) and other means of long-distance signalling running throughout the plant bodies. Plant-specific synapses and APs are proposed to allow plants to generate their identities having unique ways of sensing and acting as agents with their own goals guiding their future activities. Plants move their organs with a purpose and with obvious awareness of their surroundings and require APs to perform and control these movements. Self-identities allow vascular plants to act as individuals enjoying sociality via their self/non-self-recognition and kin recognition. Flowering plants emerge as cognitive and intelligent organisms when the major strategy is to attract and control their animal pollinators as well as seed dispersers by providing them with food enriched with nutritive and manipulative/addictive compounds. Their goal in interactions with animals is manipulation for reproduction, dispersal and defence. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7934911PMC
http://dx.doi.org/10.1098/rstb.2019.0760DOI Listing

Publication Analysis

Top Keywords

vascular plants
12
bodies plant-specific
8
plants
6
individuality sociality
4
sociality vascular
4
plants vascular
4
plants integrated
4
integrated coherent
4
coherent bodies
4
plant-specific synaptic
4

Similar Publications

Stacking desirable haplotypes across the genome to develop superior genotypes has been implemented in several crop species. A major challenge in Optimal Haplotype Selection is identifying a set of parents that collectively contain all desirable haplotypes, a complex combinatorial problem with countless possibilities. In this study, we evaluated the performance of metaheuristic search algorithms (MSAs)-genetic algorithm (GA), differential evolution (DE), particle swarm optimisation (PSO), and simulated annealing (SA) for optimising parent selection under two genotype building (GB) objectives: Optimal Haplotype Selection (OHS) and Optimal Population Value (OPV).

View Article and Find Full Text PDF

Widespread incongruence in the phylogenomics of the ancient land plant lineage, Selaginellaceae (lycophytes).

Mol Phylogenet Evol

September 2025

School of Ecology and Environmental Science, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Life Sciences, Yunnan University, Kunming 650504 Yunnan, China. Electronic address:

The advent of high-throughput genomic sequencing has provided unprecedented access to genome-scale data. This deluge of data has yielded new insights into phylogenetic relationships across the tree of life. However, incongruent results arising from different data partitions or from the use of different analyses have often been overlooked or insufficiently explored.

View Article and Find Full Text PDF

Trimethylation of histone H3 at lys36 (H3K36me3) promotes gene transcription and governs plant development and plant responses to environmental cues. Yet, how H3K36me3 is translated into specific downstream events remains largely uninvestigated. Here, we report that the Arabidopsis PWWP-domain protein HUA2 binds methyl-H3K36 in a PWWP motif-dependent manner.

View Article and Find Full Text PDF

Grain size is a crucial determinant of rice yield, yet the molecular mechanisms controlling this trait remain only partially understood. Here, we identified the JMJ720 locus as a key regulator of grain size through map-based cloning. The jmj720 mutant was found to exhibit significantly larger grains when compared to the wild type (WT).

View Article and Find Full Text PDF

An oomycete effector targets host calmodulin to suppress plant immunity.

Plant J

September 2025

National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China.

Tropical and subtropical fruit trees face serious threats of oomycete-caused plant diseases. However, the molecular mechanism by which oomycete pathogens suppress the immunity of these fruit trees remains largely unclear. Effectors play a crucial role in the pathogenesis of plant pathogenic oomycetes.

View Article and Find Full Text PDF