98%
921
2 minutes
20
Nitrogen-containing flame retardants have been extensively applied due to their low toxicity and smoke-suppression properties; however, their poor charring ability restricts their applications. Herein, a representative nitrogen-containing flame retardant, polyheptanazine, was investigated. Two novel, cost-effective phosphorus-doped polyheptazine (PCN) and cobalt-anchored PCN (Co@PCN) flame retardants were synthesized via a thermal condensation method. The X-ray photoelectron spectroscopy (XPS) results indicated effective doping of P into triazine. Then, flame-retardant particles were introduced into thermoplastic polyurethane (TPU) using a melt-blending approach. The introduction of 3 wt% PCN and Co@PCN could remarkably suppress peak heat release rate (pHRR) (48.5% and 40.0%), peak smoke production rate (pSPR) (25.5% and 21.8%), and increasing residues (10.18 wt%→17.04 wt% and 14.08 wt%). Improvements in charring stability and flame retardancy were ascribed to the formation of P-N bonds and P=N bonds in triazine rings, which promoted the retention of P in the condensed phase, which produced additional high-quality residues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826771 | PMC |
http://dx.doi.org/10.3390/molecules26020340 | DOI Listing |
Environ Sci Technol
September 2025
Department of Environmental Toxicology, University of California Davis, Davis, California 95616, United States.
Pollution can have lasting effects beyond the exposure period, potentially impacting multiple generations. Polybrominated diphenyl ether (PBDE) flame retardants are widespread, including in oceans, yet their multigenerational impacts remain poorly understood. We investigated whether BDE-99, a ubiquitous PBDE, induces neurobehavioral and molecular effects across generations in the fish .
View Article and Find Full Text PDFToxicol Lett
September 2025
Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100, Haining Road, Shanghai 200080, China. Electronic address:
Bisphenol A (BPA), a synthetic organic compound widely used in plastic products, toys, water pipes, and flame retardants, has been linked to the onset and progression of various cancers. This study explores the association between BPA and bladder cancer using bioinformatics approaches. We applied the ssGSEA algorithm to calculate BPA-related scores in TCGA-BLCA cohort and classify patients based on this.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China. Electronic address:
This study introduces a novel bio-based flame retardant, MCC-GMA-PA-MEL, synthesized from microcrystalline cellulose (MCC) modified with phytic acid (PA) and melamine (MEL). Characterization of the resulting composites revealed a significant enhancement in PLA crystallinity to 35.9 %, driven by improved molecular mobility and heterogeneous nucleation effects.
View Article and Find Full Text PDFEnviron Res
September 2025
Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States.
Gestational polybrominated diphenyl ethers (PBDEs) exposures have been associated with thyroid disruption in pregnant women and adverse neurobehavioral outcomes in their children, but it is unknown if they interfere with children's sleep patterns. We assessed gestational PBDE exposure (16 weeks) and child sleep patterns from ages 2-8 years using 410 mother-child dyads in the Health Outcomes and Measures of the Environment (HOME) Study. Gestational biomarkers of serum PBDEs include PBDE-153 (GM ± GSD: 5.
View Article and Find Full Text PDFEnviron Sci Process Impacts
September 2025
State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
Organobrominated contaminants, such as brominated flame retardants (BFRs), pose significant environmental risks due to their persistence, toxicity, and complex transformation pathways. Compound-specific stable isotope analysis (CSIA) of carbon (C) and bromine (Br) has emerged as a powerful tool to elucidate degradation mechanisms, particularly debromination processes that are critical to understanding environmental fate. This review synthesizes principles, methodologies, and applications of CSIA-C/Br for tracking the transformation of organobrominated pollutants, emphasizing advances in overcoming analytical challenges.
View Article and Find Full Text PDF