98%
921
2 minutes
20
In 1937, Sir H. A Krebs first published the Citric Acid Cycle, a unidirectional cycle with carboxylic acids. The original concept of the Citric Acid Cycle from Krebs' 1953 Nobel Prize lecture illustrates the unidirectional degradation of lactic acid to water, carbon dioxide and hydrogen. Here, we add the heart lactate dehydrogenase•proton-linked monocarboxylate transporter 1 complex, connecting the original Citric Acid Cycle to the flow of energy and material. The heart lactate dehydrogenase•proton-linked monocarboxylate transporter 1 complex catalyses the first reaction of the Citric Acid Cycle, the oxidation of lactate to pyruvate, and thus secures the provision of pyruvic acid. In addition, we modify Krebs' original concept by feeding the cycle with oxaloacetic acid. Our concept enables the integration of anabolic processes and allows adaption of the organism to recover ATP faster.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7827294 | PMC |
http://dx.doi.org/10.3390/ijms22020604 | DOI Listing |
Plant Physiol
September 2025
National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China.
Lemon (Citrus limon L.), an economically important Citrus species, produces high levels of citric acid. However, the regulatory mechanisms underlying citric acid accumulation in lemon fruit are poorly understood.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Key Lab of Rubber-Plastics, Ministry of Education/Shandong Provincial Key, Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China. Electronic address:
A dynamically crosslinked network VEC (vulcanized ESO and CA) was synthesized in situ via zinc acetate-catalyzed epoxy ring-opening between epoxidized soybean oil (ESO) and anhydrous citric acid (CA), then incorporated into polylactic acid (PLA)/polybutylene adipate terephthalate (PBAT) blends to enhance interfacial compatibility. The dynamic ester-exchange network acted as an intermediate phase, improving the integration of the flexible PBAT phase within the rigid PLA matrix. VEC content critically influenced mechanical properties, with in-situ crosslinking during dynamic vulcanization enhancing chain interactions and blend homogeneity.
View Article and Find Full Text PDFFood Chem
August 2025
Food Process Engineering Laboratory, Department of Chemical Engineering, Alagappa College of Technology, Anna University, Guindy, Chennai 600 025, India.. Electronic address:
A sustainable and energy-efficient method was developed to extract bioactive compounds from black cardamom (Amomum subulatum) using microwave-assisted extraction (MAE) with Natural Deep Eutectic Solvents (NADES). Six NADES composed of choline chloride, lactic acid, citric acid, glucose, and sucrose were prepared by heating and stirring. Lact:Suc and Lact:Gluc, showed the highest extraction efficiencies.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Radiation Oncology, Stanford University, Stanford, CA 94305.
Reduced mitochondrial quality and quantity in tumors is associated with dedifferentiation and increased malignancy. However, it remains unclear how to restore mitochondrial quantity and quality in tumors and whether mitochondrial restoration can drive tumor differentiation. Our study shows that restoring mitochondrial function using retinoic acid (RA) to boost mitochondrial biogenesis and a mitochondrial uncoupler to enhance respiration synergistically drives neuroblastoma differentiation and inhibits proliferation.
View Article and Find Full Text PDFACS Omega
August 2025
VinUni-Illinois Smart Health Center, VinUniversity, Hanoi 100000, Vietnam.
Accurate and accessible glucose detection is essential for clinical diagnostics, point-of-care testing, food safety, and biosensing applications. In this study, we present a simple, scalable, and dual-mode glucose sensor that integrates commercial potassium permanganate (KMnO) with glucose oxidase to enable sensitive and selective detection in the clinically critical range of 1-5 mM. Leveraging the strong oxidative power and distinct optical characteristics of KMnO, the sensor operates via both absorbance measurement at 400 nm and visual colorimetric analysis, displaying a clear color change from purple to pink and yellow upon reaction with glucose.
View Article and Find Full Text PDF