98%
921
2 minutes
20
Artemisinin and its derivatives are of great research value in biology. In this work, we study their chiral and optical properties. The multidimensional multifunction analysis method is used to analyze the linear and nonlinear optical processes (one-photon and two-photon absorption: OPA and TPA), electronic circular dichroism (ECD), and Raman optical activity (ROA) mechanisms under light excitation. Transition dipole moments (TDMs) and charge difference density (CDD) are used to describe the electromagnetic interaction between ECD and ROA when a substance is excited by light. The theoretical research results of the study show that the dioxygen atoms provide an intermediary for the transfer between charges and also enhance the role of the TDMs. This generalized chiral theory can not only explain the traditional sources of chirality but also distinguish whether the molecule has chirality when the chiral center is not obvious. By analyzing ROA and different vibration modes, we can clearly observe that each part of the molecule responds differently when excited.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7726762 | PMC |
http://dx.doi.org/10.1021/acsomega.0c03361 | DOI Listing |
Anal Chim Acta
November 2025
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China. Electronic address:
Background: The development of specific fluorescent probes for cancer cell discrimination holds significant promise for advancing cancer diagnostics. Conventionally, these probes operate by translating differences in biomarkers or microenvironmental factors into variations in whole-cell fluorescence intensity. However, this dominant, intensity-based strategy is highly susceptible to extraneous fluctuations arising from probe concentration, illumination instability and complex intracellular environment.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Nanobiosensor Analysis, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China. Electronic address:
Background: Hexavalent chromium ions (Cr(VI)), a notorious toxic heavy metal pollutant with proven carcinogenicity, endangers human health and the environment. Meanwhile, l-ascorbic acid (L-AA), a vital biological antioxidant, has abnormal levels closely tied to various diseases. Developing efficient synchronous detection methods for these two key analytes is of great value in clinical and environmental monitoring.
View Article and Find Full Text PDFJ Thromb Haemost
September 2025
Department of Immunology and Inflammation, Centre for Haematology, Imperial College, London, UK. Electronic address:
Background: The VWF Phe2561Tyr variant has been previously shown to exhibit gain-of-function like activity and increase the risk of repeated MI in patients below 55 years of age. It was hypothesised that altered stem dynamics enhanced the responsiveness of the molecule to shear stress. In this study we investigated the evolutionary significance of the amino acid at position 2561 and functional impacts of variants at this site.
View Article and Find Full Text PDFAm J Ophthalmol
September 2025
Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA. Electronic address:
Purpose: To report on the real-world experience of using intravitreal pegcetacoplan for the treatment of geographic atrophy (GA) in age-related macular degeneration (AMD).
Design: Retrospective interventional case series.
Methods: Eyes with symptomatic GA secondary to AMD were treated with 15mg of intravitreal pegcetacoplan and participated in an ongoing prospective swept-source optical coherence tomography angiography (SS-OCTA) imaging study.
Colloids Surf B Biointerfaces
September 2025
Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA 19104, USA. Electronic address:
The clinical demand for safer, more precise, and functionally versatile imaging tools has intensified with the increasing complexity of disease diagnosis and management. Despite major strides in imaging technologies such as MRI, CT, USG, and PET/SPECT, many modalities are grappled by issues including low specificity, high systemic toxicity of contrast agents, and limited ability to provide real-time functional data. Dreaded by these shortcomings, nanotechnology-based approaches such as liposomes, quantum dots (QDs), polymeric nanoparticles (NPs), gold NPs, lipid NPs, and metallic NPs have emerged as promising alternatives.
View Article and Find Full Text PDF