Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The NLRP3 inflammasome is associated with a variety of human diseases, including cryopyrin-associated periodic syndrome (CAPS). CAPS is a dominantly inherited disease with missense mutations. Currently, most studies on the NLRP3-inflammasome have been performed with mice, but the activation patterns and the signaling pathways of the mouse NLRP3 inflammasome are not always identical with those in humans. The NLRP3 inflammasome activation in pigs is similar to that in humans. Therefore, pigs with precise NLRP3-point mutations may model human CAPS more accurately. In this study, an NLRP3 gain-of-function pig model carrying a homozygous R259W mutation was generated by combining CRISPR/Cpf1-mediated somatic cell genome editing with nuclear transfer. The newborn NLRP3 R259W homozygous piglets showed early mortality, poor growth, and spontaneous systemic inflammation symptoms, including skin lesion, joint inflammation, severe contracture, and inflammation-mediated multiorgan failure. Severe myocardial fibrosis was also observed. The tissues of inflamed skins and several organs showed significantly increased expressions of NLRP3, Caspase-1, and inflammation-associated cytokines and factors (i.e., IL-1β, TNF-α, IL-6, and IL-17). Notably, approximately half of the homozygous piglets grew up to adulthood and even gave birth to offspring. Although the F1 heterozygous piglets showed improved survival rate and normal weight gain, 39.1% (nine out of 23) of the piglets died early and exhibited spontaneous systemic inflammation symptoms. In addition, similar to homozygotes, adult heterozygotes showed increased delayed hypersensitivity response. Thus, the NLRP3 R259W pigs are similar to human CAPS and can serve as an ideal animal model to bridge the gap between rodents and humans.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1901468DOI Listing

Publication Analysis

Top Keywords

nlrp3 inflammasome
12
nlrp3
8
human caps
8
nlrp3 r259w
8
homozygous piglets
8
spontaneous systemic
8
systemic inflammation
8
inflammation symptoms
8
engineered pigs
4
pigs carrying
4

Similar Publications

Klotho attenuates D-galactose-induced cardiac aging through the ROS/NLRP3/pyroptosis pathway.

J Mol Cell Cardiol

September 2025

Department of Cardiology, First School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, Guangzhou 510080, PR China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical Uni

Objective: Activation of NLRP3 inflammasome contributes to cardiac aging progression. Klotho, a recognised anti-aging protein, exerts protective effects against cardiac aging. In this study, we aimed to elucidate the protective effects of Klotho on D-galactose (D-gal)-induced cardiac aging and the underlying mechanisms.

View Article and Find Full Text PDF

Huopu Xialing Decoction Mitigates Influenza A-Induced Pulmonary Injury by inhibiting METTL3-Nlrp3(m6A) Mediated NLRP3 Inflammasome Activation.

J Ethnopharmacol

September 2025

School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, 510632, China; Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of

Ethnopharmacological Relevance: Huopu Xialing Decoction (HXD) is a traditional Chinese medicine (TCM) formula widely used in the clinical treatment of respiratory viral infections. Despite its established application, the pharmacological mechanisms underlying its therapeutic effects against influenza remain to be fully elucidated.

Aim Of The Study: This study aimed to investigate the protective effects of HXD against influenza A virus-induced lung inflammation and to explore the role of gut microbiota and epigenetic regulation in mediating these effects.

View Article and Find Full Text PDF

A potent NLRP3 inhibitor effective against both MCC950-sensitive and -resistant inflammation.

Cell Chem Biol

September 2025

Department of Biological Sciences, College of Natural Science, Seoul National University, Seoul 08826, South Korea. Electronic address:

The nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome detects a broad spectrum of pathogen- and damage-associated molecular patterns (PAMPs and DAMPs), initiating inflammatory responses through caspase-1 activation and interleukin (IL)-1β/IL-18 release. Dysregulated NLRP3 activation is implicated in a range of diseases, including infectious diseases, autoinflammatory disorders, metabolic disorders, and cancer, making it an attractive therapeutic target. Here, we identify ZAP-180013 as a potent and selective small-molecule inhibitor of NLRP3 through high-throughput chemical screening.

View Article and Find Full Text PDF

Targeting NLRP3 inflammasome with curcumin: mechanisms and therapeutic promise in chronic inflammation.

Inflammopharmacology

September 2025

Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.

The NOD‑like receptor family pyrin domain containing 3 (NLRP3) inflammasome is a key molecular complex that amplifies inflammatory cascades by maturing interleukin‑1 beta (IL-1β) and interleukin‑18 (IL-18) and inducing pyroptosis. It serves as a major driver and co-driver of numerous diseases associated with chronic inflammation. Dysregulated NLRP3 activation contributes to the progression of disorders such as rheumatoid arthritis, inflammatory bowel disease, neurodegenerative diseases and atherosclerosis.

View Article and Find Full Text PDF

Background: Cryopyrin-associated periodic syndrome (CAPS) is an autoinflammatory disease caused by a gain-of-function mutation in the gene, which regulates inflammasome-mediated interleukin-1β (IL-1β) production. This leads to recurrent episodes of fever, rash, and arthritis, typically beginning in childhood.

Objective: To demonstrate the role of a missense mutation, c.

View Article and Find Full Text PDF