Investigation of hairpin DNA and chelerythrine interaction by a single bio-nanopore sensing interface.

Analyst

Research Center for Analytical Sciences, Chemistry Department, College of Sciences, Northeastern University, Shenyang 110819, China.

Published: July 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chelerythrine (CHE) is one of the potential drugs for cancer treatments. The interaction between hairpin DNA and CHE has been investigated by spectral and mass spectrometry methods. In this paper, the stability of hairpin DNA with different loop bases and its interaction with CHE were explored with a single α-hemolysin (α-HL) nanopore sensing interface. The results showed that the characteristic current pulses not only relate to the loop composition changes of the hairpin DNA, but also provide interaction information between CHE and the hairpin DNA molecules. The dwell time of current pulses for hairpin DNA was significantly increased (hundreds of ms) due to the addition of CHE, and two characteristic current distributions were recognized for the hairpin with T and C loops. The two characteristic current groups could be ascribed to the hairpin DNA and the ones with CHE. This study indicates that it is possible to study the interaction between single CHE and single hairpin DNA molecules by the single-nanopore sensing interface as an alternative method to conventional spectrometric methods for therapeutic mechanism and drug screening purposes.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9an00113aDOI Listing

Publication Analysis

Top Keywords

hairpin dna
32
sensing interface
12
characteristic current
12
dna
8
interaction single
8
hairpin
8
dna che
8
interaction che
8
current pulses
8
dna molecules
8

Similar Publications

An electrochemical biosensor for detection of copper(II) based on FeO@Au magnetic nanoparticles and Cu-dependent DNAzyme assisted nicking endonuclease signal amplification.

Analyst

September 2025

Functional Nanomaterial-based Chemical and Biological Sensing Technology Innovation Team of Department of Education of Yunnan Province, Yunnan Minzu University, Kunming 650504, P. R. China.

Copper ions are essential elements in the human body and participate in various physiological activities in the bodies of organisms. Herein, an ultrasensitive electrochemical biosensor was developed for detection of copper ions (Cu) based on FeO@Au magnetic nanoparticles (FeO@Au MNPs) and a Cu-dependent DNAzyme assisted nicking endonuclease signal amplification (NESA) strategy. dsDNA is formed by a hybridization reaction between DNA S2 and S1 immobilized on the surface of FeO@Au MNPs.

View Article and Find Full Text PDF

Background: Aflatoxin B1 (AFB1) is a highly carcinogenic mycotoxin frequently found in contaminated food products, posing a significant threat to public health and food safety. Therefore, the development of rapid, sensitive, and reliable detection methods for AFB1 is critical for early warning and prevention. However, traditional detection techniques often require expensive equipment, skilled personnel, and complex procedures, limiting their suitability for on-site applications.

View Article and Find Full Text PDF

Radioresistance is a major obstacle to effective radiotherapy in breast cancer. BUB1 mitotic checkpoint serine/threonine kinase B (BUB1B) is involved in numerous biological processes associated with cancer; however, its specific role in mediating radioresistance in breast cancer remains poorly characterized. The present study first evaluated its expression profile and association with patient prognosis through bioinformatics analysis.

View Article and Find Full Text PDF

Deoxynivalenol (DON), a prevalent trichothecene mycotoxin in cereals, poses severe threats to human health and agricultural sustainability. Conventional detection methods face limitations in sensitivity and operational complexity for on-site applications. Herein, we develop an electrochemical aptasensor integrating dual-signal amplification strategies: Nb.

View Article and Find Full Text PDF

Keratin 15 promotes tumor growth, invasion, epithelial-mesenchymal transition and radioresistance but represses ferroptosis via a Wnt/β-catenin signaling-related way in breast cancer.

Mol Cell Biochem

September 2025

Cancer Center, Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, Qingdao University, University of Health and Rehabilitation Sciences, No. 127 Siliunan Road, 266042, Qingdao, China.

Keratin 15 (KRT15) promotes tumor progression in several cancers, but its engagement in breast cancer is seldom uncovered. This study aimed to explore the impact of KRT15 modification on breast cancer growth, mobility, radiosensitivity, ferroptosis, and Wnt/β-catenin signaling pathway. A lentiviral vector containing short hairpin RNA or complementary DNA targeting KRT15 was transfected into MDA-MB-231 and MCF-7 cells in vitro.

View Article and Find Full Text PDF