Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

BACKGROUND Myocardial infarction (MI) is the main cause of heart failure (HF), and sympathetic nerve activity is associated with prognosis chronic heart failure. Renal sympathetic denervation (RDN) is noted for its powerful effect on the inhibition of sympathetic nerve activity. This study investigated the effect of RDN on heart failure in dogs after myocardial infarction. MATERIAL AND METHODS The experimental animals were randomized into 2 groups: the MI group (n=12) and the sham operation group (n=6). In the MI group we established an MI model by permanently ligating the left anterior descending branch. After 4 weeks, the MI dogs were randomly divided into 2 groups: the MI+RDN group (MI+renal sympathetic denervation, n=6) and the simple MI group (n=6). Animals in the MI+RDN group underwent both surgical and chemical renal denervation. RESULTS Compared with sham operation group, left ventricular fraction shortening (LVFS) and left ventricular ejection fraction (LVEF) were significantly reduced in the simple MI group, while the reduction was partly reversed in the MI+RDN group. RDN reduced sympathetic nerve activity and release of B-type natriuretic peptide (BNP) and Angiotensin II (AngII) in the MI+ RDN group but not in the simple MI group. CONCLUSIONS Canine renal sympathetic denervation prevents myocardial malignant remodeling by lowering the activity of the systemic sympathetic nerve and inhibiting renin-angiotensin-aldosterone system (RASS) activation, providing a new target and method for the treatment of heart failure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6556070PMC
http://dx.doi.org/10.12659/MSM.914384DOI Listing

Publication Analysis

Top Keywords

sympathetic denervation
16
heart failure
16
sympathetic nerve
16
renal sympathetic
12
myocardial infarction
12
nerve activity
12
mi+rdn group
12
simple group
12
group
11
sham operation
8

Similar Publications

Purpose: Cardiac noradrenergic denervation visualized by meta-[I]iodobenzylguanidine ([I]MIBG) imaging supports the diagnosis of Parkinson's disease (PD). Recently, meta-[F] fluorobenzylguanidine ([F]MFBG) PET demonstrated favorable imaging characteristics compared with [I]MIBG scintigraphy for neuroendocrine tumors. We assessed [F]MFBG dosimetry and myocardial pharmacokinetics in healthy controls and PD patients.

View Article and Find Full Text PDF

Hypertension is a clinical condition associated with an increase in cardiovascular morbidity and mortality. In chronic kidney disease (CKD), hypertension is also a driver of faster disease progression. Correct and appropriate treatment with antihypertensive medication reduces the risk of cardiovascular events and slows kidney disease progression.

View Article and Find Full Text PDF

Hypertension constitutes a major risk factor for cardiovascular diseases. Globally, the management and control of hypertension remain suboptimal. At present, pharmacological intervention is a critical strategy for patients with hypertension to achieve blood pressure regulation.

View Article and Find Full Text PDF

Application of stereotactic radiotherapy in the treatment of cardiovascular diseases through sympathectomy.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

May 2025

Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, China.

Sympathectomy, as an emerging treatment method for cardiovascular diseases, has received extensive attention in recent years. Stereotactic radiotherapy (SRT), a precise and noninvasive therapeutic technique, has gradually been introduced into interventions targeting the sympathetic nervous system and has shown promising prospects in the management of cardiovascular conditions. Using three-dimensional imaging, SRT can accurately localize sympathetic ganglia and deliver high-energy radiation to disrupt nerve fibers, thereby achieving effects similar to conventional sympathectomy while reducing surgery-related complications and shortening recovery time.

View Article and Find Full Text PDF

Electroacupuncture alleviates intestinal ischemia-reperfusion-induced acute lung injury via the vagus-sympathetic nerve pathway.

Int Immunopharmacol

September 2025

Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China; Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China. Electronic address:

Aims: Intestinal ischemia-reperfusion (II/R) injury predominantly causes acute lung injury (ALI), and in severe instances, acute respiratory distress syndrome, both associated with high mortality. Electroacupuncture (EA) excels in regulating autonomic nervous system balance and safeguarding organ function. This study delved into EA's impacts and mechanisms on II/R-induced ALI.

View Article and Find Full Text PDF