Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microalgae are a promising biofuel resource, but their high cost and low productivity hinder their commercial applications. In the present study, Monoraphidium sp. QLZ-3 was cultivated in walnut shell extracts (WSE) supplemented with carbon dioxide (CO). Biomass was enhanced from 0.40 g L to 1.18 g L, and lipid content reached 49.54% in WSE-12% CO media. Biomass and lipid productivity reached 196.88 and 97.52 mg L d, which were 1.33- and 1.57-fold higher than those of the control, respectively. The amount of carbohydrates increased, but the protein contents decreased. Furthermore, the application of CO promoted nutrient and polyphenol absorption and upregulated the expression levels of lipid biosynthetic genes of this WSE-cultivated alga. These results indicated that coupling WSE and CO could be an efficient strategy to enhance biofuel production by microalgae.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2019.121419DOI Listing

Publication Analysis

Top Keywords

biomass lipid
8
monoraphidium qlz-3
8
walnut shell
8
shell extracts
8
supplemented carbon
8
carbon dioxide
8
enhancing biomass
4
lipid
4
lipid production
4
production nutrient
4

Similar Publications

Drought stress affects plant growth and production. To cope with drought stress, plants induced physiological and metabolic changes, serving as a protective approach under drought-stress conditions. The response to drought can vary based on plant type (C3 vs.

View Article and Find Full Text PDF

Terminalia arjuna, an important medicinal plant in traditional Indian systems, has been extensively studied for its cardioprotective bark. However, limited attention has been given to its fruit, which contains several biologically active phytochemicals with potential antioxidant, anti-inflammatory, and immunomodulatory properties. This study aimed to isolate and partially purify phytoactive compounds from the fruit of T.

View Article and Find Full Text PDF

Characterization of fatty acid biosynthesis in microalga Scenedesmus - from the perspective of biofuel production.

Biochim Biophys Acta Proteins Proteom

September 2025

Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Malhaur Station Road, Lucknow 226028, India; Research Cell, Amity University Uttar Pradesh, Lucknow Campus, Malhaur Station Road, Lucknow 226028, India. Electronic address:

Scenedesmus quadricauda, a freshwater microalga, has gained attention for its high lipid accumulation potential. However, information on fatty acid (FA) biosynthesis pathways in Scenedesmus species remains limited. Biomass (1.

View Article and Find Full Text PDF

Iron oxide-mediated enhancement of extracellular electron transfer and symbiosis in consortium of electroactive bacteria and microalgae for wastewater treatment.

Water Res

August 2025

College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China. Electronic address:

This study explores the role of α-Fe₂O₃ in improving extracellular electron transfer (EET) and symbiotic interactions between electroactive Shewanella oneidensis MR-1, its gene-deficient mutants (ΔmtrC, ΔomcA, and ΔcymA), and microalgae (Chlorella vulgaris). The iron oxide facilitates the efficient transfer of electrons generated by MR-1 to microalgal photosystem via the pathway of CymA-MtrC-OmcA to α-Fe₂O₃. This process enhances the removals of TOC, TN, and NH₄⁺-N in the MR-1 bacterial-algal consortium by 9.

View Article and Find Full Text PDF

Nanoplastics (NPs) in marine ecosystems have garnered increasing attention for their interference with the physiological processes of aquatic organisms. An in-depth examination of the toxicological responses of Nannochloropsis oceanica, a species vital to marine ecosystems, is essential due to the crucial role of lipid metabolism in carbon sequestration and energy allocation in microalgae. This study analyzed the toxicological responses of N.

View Article and Find Full Text PDF