98%
921
2 minutes
20
The notion of tumor microenvironment (TME) has been brought to the forefront of recent scientific literature on cancer. However, there is no consensus on how to define and spatially delineate the TME. We propose that the time is ripe to go beyond an all-encompassing list of the components of the TME, and to construct a multilayered view of cancer. We distinguish six layers of environmental interactions with the tumor and show that they are associated with distinct mechanisms, and ultimately with distinct therapeutic approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.trecan.2018.10.002 | DOI Listing |
Mikrochim Acta
September 2025
School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China.
A CuFeO/NiCo-LDH heterojunction electrochemical sensor (LDH: layered double hydroxide) was developed for the sensitive detection of tetracycline (TC). The sensor was constructed by integrating ZIF-67-derived nanocage NiCo-LDH on nickel foam with CuFeO, forming a p-n heterojunction that enhanced electron transfer and TC adsorption. The sensor exhibited bilinear detection ranges (0.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), Mumbai, 400019, India. Electronic address:
Integrating multi-enzyme systems within metal-organic frameworks (MOFs) has garnered significant attention in biocatalysis due to their tunable structural properties and ability to enhance enzyme performance in cascade reactions. The unique features of MOFs, such as well-defined pore apertures, tailorable compositions, and high loading capacity, facilitate the design of robust multi-enzyme bio-composites with enhanced recyclability and specificity. This review explores systematic approaches for the compartmentalization and positional co-immobilization of multiple enzymes within MOFs, focusing on two key strategies: (i) layer-by-layer assembly and (ii) pore-engineered compartmentalization.
View Article and Find Full Text PDFAdv Mater
September 2025
Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea.
Spiro-OMeTAD has remained the benchmark hole-transporting material (HTM) in state-of-the-art perovskite solar cells, owing to its favorable energy level alignment and excellent interfacial compatibility. However, its practical implementation is critically hindered by the intrinsic instabilities introduced by conventional dopants such as lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and 4-tert-butylpyridine (tBP). While these dopants enhance electrical conductivity, they concurrently initiate multiple degradation pathways-including ionic migration, radical deactivation, and moisture/thermal-induced morphological failure-thereby compromising device longevity and reproducibility.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technol
Aiming at the problems such as large dust in each production process of open-pit mines, insufficient water resistance of the curing layer of dust control materials, and poor mechanical strength, this research applied the network generated by Schiff base reaction between oxidized starch (OS) and gelatin (GEL) as the basis, and combined with polyvinyl alcohol (PVA) and calcium chloride (CaCl). This material improves the problem of poor dust suppression effect caused by the environment of open-pit coal mines. It was found that the large number of amino groups contained in GEL attack the carbon atoms in the carbonyl group of OS to form carbon-nitrogen double bonds, generating Schiff bases as the crosslinking network, which enhanced the water resistance of the polymers.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Physics and Astronomy, University of California, Los Angeles, CA 90095.
Distortion products are tones produced through nonlinear effects of a system simultaneously detecting two or more frequencies. These combination tones are ubiquitous to vertebrate auditory systems and are generally regarded as byproducts of nonlinear signal amplification. It has previously been shown that several species of infectious-disease-carrying mosquitoes utilize these distortion products for detecting and locating potential mates.
View Article and Find Full Text PDF