98%
921
2 minutes
20
In multicellular organisms, dedicated regulatory circuits control cell type diversity and responses. The crosstalk and redundancies within these circuits and substantial cellular heterogeneity pose a major research challenge. Here, we present CRISP-seq, an integrated method for massively parallel single-cell RNA sequencing (RNA-seq) and clustered regularly interspaced short palindromic repeats (CRISPR)-pooled screens. We show that profiling the genomic perturbation and transcriptome in the same cell enables us to simultaneously elucidate the function of multiple factors and their interactions. We applied CRISP-seq to probe regulatory circuits of innate immunity. By sampling tens of thousands of perturbed cells in vitro and in mice, we identified interactions and redundancies between developmental and signaling-dependent factors. These include opposing effects of Cebpb and Irf8 in regulating the monocyte/macrophage versus dendritic cell lineages and differential functions for Rela and Stat1/2 in monocyte versus dendritic cell responses to pathogens. This study establishes CRISP-seq as a broadly applicable, comprehensive, and unbiased approach for elucidating mammalian regulatory circuits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cell.2016.11.039 | DOI Listing |
ACS Synth Biol
September 2025
School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85281, United States.
Cellular resource limitations create unintended interactions among synthetic gene circuit modules, compromising circuit modularity. This challenge is particularly pronounced in circuits with positive feedback, where uneven resource allocation can lead to Winner-Takes-All (WTA) behavior, favoring one module at the expense of others. In this study, we experimentally implemented a Negatively Competitive Regulatory (NCR) controller using CRISPR interference (CRISPRi) and evaluated its effectiveness in mitigating WTA behavior in two gene circuits: dual self-activation and cascading bistable switch.
View Article and Find Full Text PDFmBio
September 2025
Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, USA.
The human fungal pathogen changes its morphology in response to temperature. At 37°C, it grows as a budding yeast, whereas at room temperature (RT), it transitions to hyphal growth. Prior work has demonstrated that 15-20% of transcripts are temperature-regulated, and that transcription factors (TFs) Ryp1-4 are necessary to establish yeast growth.
View Article and Find Full Text PDFFront Cell Dev Biol
August 2025
Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
Thyroid carcinoma is among the most common endocrine system malignancies. Lactate metabolism and lactylation modification roles in carcinogenesis and development have garnered more interest in recent years. The expression and function of lactate transporters (MCTs) and significant metabolic enzymes are included in our summary of the characterisation of lactate metabolism in thyroid cancer.
View Article and Find Full Text PDFJ Biol Chem
September 2025
State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China. Electronic address:
Ferroptosis is a novel type of programmed cell death caused by iron-dependent lipid peroxidation. Targeted induction of ferroptosis holds great promise for cancer treatment. SNHG, a newly recognized lncRNA family, has been reported to implicate in the proliferation, invasion, migration or drug resistance of cancer cells.
View Article and Find Full Text PDFBiochem Pharmacol
September 2025
School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China. Electronic address:
Parkinson's Disease (PD), the second most common neurodegenerative disease after Alzheimer's disease, is clinically characterized by resting tremor, rigidity and postural balance disorder. Its pathological essence is the progressive degenerative death of dopaminergic neurons in the substantia nigra pars compacta (SNpc), leading to a significant decrease in striatal dopamine (DA) levels. This results in the dysfunction of basal ganglia-thalamus-cortex (BGTC) circuit.
View Article and Find Full Text PDF