Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Cellular resource limitations create unintended interactions among synthetic gene circuit modules, compromising circuit modularity. This challenge is particularly pronounced in circuits with positive feedback, where uneven resource allocation can lead to Winner-Takes-All (WTA) behavior, favoring one module at the expense of others. In this study, we experimentally implemented a Negatively Competitive Regulatory (NCR) controller using CRISPR interference (CRISPRi) and evaluated its effectiveness in mitigating WTA behavior in two gene circuits: dual self-activation and cascading bistable switch. We chromosomally integrated a tunable dCas9 gene and designed module-specific gRNAs, with each module encoding its own gRNA to self-repress via competition for limited dCas9. This configuration introduces strong negative feedback to the more active module while reallocating resources to the less active one, promoting balanced module activation. Compared to the control group lacking dCas9-mediated repression, the NCR controller significantly increased module coactivation and suppressed WTA behavior. Our quantitative results demonstrate that NCR provides an effective strategy for regulating resource competition and improving the modularity of synthetic gene circuits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssynbio.5c00394 | DOI Listing |