Ferroptosis is a novel type of programmed cell death caused by iron-dependent lipid peroxidation. Targeted induction of ferroptosis holds great promise for cancer treatment. SNHG, a newly recognized lncRNA family, has been reported to implicate in the proliferation, invasion, migration or drug resistance of cancer cells.
View Article and Find Full Text PDFethanolic extract (ORE) was prepared via ultrasonication-assisted ethanolic extraction and enriched through silica gel and macroporous adsorption resin chromatography to afford a non-/weakly polar fraction (ORE-S) and a polar fraction (ORE-N), respectively. This study aimed to (1) quantify major bioactive components (e.g.
View Article and Find Full Text PDFNanomaterials have been vastly used in daily life. However, owing to their unique properties, nanomaterials also show potential side effects. Among the various organs affected by nanomaterials, the circulatory system stands out as particularly vulnerable, drawing additional attention to its cardiac toxicity.
View Article and Find Full Text PDFManganese ions are known to enhance anti-tumor immunity by activating the cGAS-STING signaling pathway. However, precise modulation of the tumor microenvironment using manganese ions remains a challenge. Dopamine, with its controlled release properties within the tumor microenvironment, offers significant potential for precision drug delivery systems.
View Article and Find Full Text PDFBrassica napus L. is an important oil crop grown worldwide. Mining for genes related to abiotic stress tolerance is valuable to improve the adaptability and increase the cultivation of B.
View Article and Find Full Text PDFEthnopharmacological Relevance: Traditional Chinese medicine (TCM) compound preparations play a significant role in the clinical treatment of vulvovaginal candidiasis (VVC).
Aim Of The Study: Candida albicans (CA) is an opportunistic fungal pathogen responsible for various human diseases, including vulvovaginal candidiasis (VVC). Hyphal growth and biofilm formation are critical virulence factors contributing to CA's pathogenicity and drug resistance.
Traditional programmed cell death, including ferroptosis, cuproptosis, and apoptosis, has demonstrated excellent anti-tumor effects and declared their complete mechanisms, however, the zinc ion-mediated tumor inhibiting mechanisms remain insufficiently explored. In this study, a self-generated oxygen nanocatalytic system (ZnO@COF@EM, ZCE) was developed to stimulate cascade amplified effect (CAE) of reactive oxygen species (ROS) generation leading to Znproptosis. The underlying Znproptosis mechanism to disrupt mitochondrial (Mito) metabolism was also investigated.
View Article and Find Full Text PDFBackground: The ribosome assembly factors PNO1 and NOB1 play crucial roles in the maturation of the 40S ribosomal small subunit. TurboID is an efficient biotin ligase that can biotinylate proteins in proximity to the target protein and is widely used to study complex biological processes within cells. In this study, we employed this technology to investigate the complex proximity network of PNO1 and NOB1 within the cell, further revealing their key roles in ribosome biogenesis.
View Article and Find Full Text PDFPronounced elevation of glycoprotein non-metastatic melanoma B (GPNMB) is a common phenomenon in a variety of brain diseases, but the expression patterns, functions, and molecular signaling of GPNMB have not been well studied. Here, we showed that pathological factors, including neuronal degeneration caused by seizures, caspase-3-induced neuronal apoptosis, neuronal debris, and β-amyloid, induced "on-demand" GPNMB expression in hippocampal microglia. Genetic ablation of GPNMB did not affect acute seizures but worsened chronic epileptogenesis.
View Article and Find Full Text PDFHypoxia-related tumor radioresistance markedly impairs the efficacy of radiotherapy. Herein, a targeted radiosensitization strategy is introduced, leveraging the upregulation of gasdermin C (GSDMC) in hypoxic tumor cells, aiming to induce pyroptosis through the application of a cobalt-containing polyoxometalate-based radiosensitizer. This novel radiosensitizer is designed for the precisely controlled release of cobalt ions upon X-ray irradiation, thereby activating caspase-8 and prompting the cleavage of GSDMC.
View Article and Find Full Text PDFThe development of efficient and low-energy consumption processes and reactors for the treatment of highly concentrated, recalcitrant, and toxic organic wastewater has been a significant challenge. This study presents a novel fluidized-bed reactor, equipped with multi-stage oxygen distribution zones, designed to enhance detoxification, carbon removal, and nitrogen removal. Experimental investigations using coking wastewater demonstrated that the multi-stage oxygen fluidized-bed reactor achieved COD and TN removal rates of 86.
View Article and Find Full Text PDFTumor metabolic reprogramming, particularly involving mitochondrial metabolism, is a hallmark of malignancy. The mitochondrial protein p32 (C1QBP) has emerged as a critical regulator in various cancers, frequently associated with poor patient prognosis. However, the role of p32 across different cancer types remains largely unexplored.
View Article and Find Full Text PDFBrain Res Bull
February 2025
Long noncoding RNA (lncRNA) are essential for modulating the onset and progression of alcohol use disorder (AUD). In this study, we investigated the molecular pathways through which lncRNA may contribute to AUD development. We assessed the expression levels of long noncoding RNA GAS5 (lncRNA GAS5) and microRNA-136-5p (miR-136-5p) in AUD tissue samples and cell lines using reverse transcription-quantitative polymerase chain reaction.
View Article and Find Full Text PDFHyperactivation of ribosome biogenesis (RiBi) drives cancer progression, yet the role of RiBi-associated proteins (RiBPs) in breast cancer (BC) is underexplored. In this study, we perform a comprehensive multi-omics analysis and reveal that assembly and maturation factors (AMFs), a subclass of RiBPs, are upregulated at both RNA and protein levels in BC, correlating with poor patient outcomes. In contrast, ribosomal proteins (RPs) do not show systematic upregulation across various cancers, including BC.
View Article and Find Full Text PDFFront Med (Lausanne)
November 2024
Background: Septic shock, the most severe stage of sepsis, causes potential circulatory failure and abnormal cell metabolism which are severe enough to affect prognosis, increase mortality, and impose significant burdens on the medical system. Despite a growing number of studies exploring the pathophysiology, epidemiology, and risk factors, research trends and hotspots in septic shock remain lacking. This study aims to create a visual knowledge map, identify research hotspots, and predict prospective trends based on bibliometric analysis.
View Article and Find Full Text PDFBioresour Technol
January 2025
Although prokaryotic microbes in coking wastewater (CWW) treatment have been comprehensively studied, the ecological functions of viruses remain unclear. A full-scale CWW biological treatment AOHO combination was studied for the virus-bacterium interactions involved in element cycles by metaviromics, metagenomics and physicochemical characteristics. Results showed the unique viromic profile with Cirlivirales and Petitvirales as the dominant viruses infecting functional bacteria hosts.
View Article and Find Full Text PDFThe biological treatment of coking wastewater is a challenge. The application of prepositioned aerobic process has rarely been systematically reported, among which the detoxification and nitrification performance of the prepositioned aerobic unit (O1) is worthy of investigation. Results indicate that O1 achieves stable simultaneous detoxification and nitrification by regulating the dissolved oxygen, effectively maintaining ammonification, nitrosation, and complete nitrification phases.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
October 2024
Am J Gastroenterol
October 2024
Mol Nutr Food Res
October 2024
Scope: Monomethyl-branched chain fatty acids (mmBCFAs) are found in a variety of food sources and are of great interest due to their potent antiinflammatory properties. However, most of the current researches have concentrated on the relationship between mmBCFAs and intestinal inflammation, and there is a large gap in the biological mechanisms involved behind their antiinflammatory effects.
Methods And Results: The present study examines the role of mmBCFAs in modulating macrophage polarization.
Upgrading processes to reduce biodegradable organic substance addition is crucial for treating landfill leachate with high pollutant concentrations, aiding carbon emission reduction. Aggregate size in activated sludge processes impacts pollutant removal and sludge/water separation. This study investigated microbial community succession and driving mechanisms in different floc-size aggregates during nitrogen removal progress upgrade from conventional to partial nitrification-denitrification in a full-scale landfill leachate treatment plant (LLTP) using 16S rRNA gene sequencing.
View Article and Find Full Text PDFJ Am Chem Soc
September 2024
The electrocatalytic reduction process is a promising technology for decomposing chlorinated organic pollutants in water but is limited by the lack of low-cost catalysts that can achieve high activity and selectivity. In studying electrochemical dechlorination of 2-chlorophenol (2-CP) in aqueous media, we find that cobalt phthalocyanine molecules supported on carbon nanotubes (CoPc/CNT), which is a highly effective electrocatalyst for breaking the aliphatic C-Cl bonds in 1,2-dichloroethane (DCA) and trichloroethylene (TCE), are completely inactive for reducing the aromatic C-Cl bond in 2-CP. Detailed mechanistic investigation, including volcano plot correlation between dechlorination rate and atomic hydrogen adsorption energy on various transition metal surfaces, kinetic measurements, in situ Raman spectroscopy, and density functional theory calculations, reveals that the reduction of the aromatic C-Cl bond in 2-CP goes through a hydrodechlorination mechanism featuring a bimolecular reaction between adsorbed atomic hydrogen and 2-CP on the catalyst surface, which requires neighboring catalytic sites, whereas the aliphatic C-Cl bonds in DCA and TCE are cleaved by direct electron transfer from the catalyst, which can occur on isolated single sites.
View Article and Find Full Text PDF