Covalent conjugation of avidin with dye-doped silica nanopaticles and preparation of high density avidin nanoparticles as photostable bioprobes.

Biosens Bioelectron

Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Research Center for Nanobiology and Nanomedicine (MOE 985 Innovative Platform), Wuhan Institute of Biotechnology, and State Key Laboratory of Virology, Wuhan Universi

Published: September 2012


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Progress in biomedical imaging depends on the development of bioprobes with a high sensitivity and stability. Fluorescent silica nanoparticles (NPs) covalent conjugation of avidin has been proposed for cancer cells imaging by fluorescence microscopy. Uniform silica NPs were prepared using water-in-oil (W/O) microemulsion methods and primary amine groups were introduced onto the surface of the NPs by condensation of tetraethyl orthosilicate (TEOS). Optically stable organic dyes, tris(2,2'-bipyridyl) dichlororuthenium(II) hexahydrate (Rubpy), were doped inside the silica NPs. The amine functions were transferred to carboxyl groups coupled with a linker elongation. Avidin was immobilized at the surface of the NPs by covalent binding to the carboxyl linkers. The binding capacity of the avidin-covered NPs for ligand biotin was quantified by titration with biotin(5-fluorescein) conjugate to 1.25 biotin binding sites/100 nm(2). We used biotinylated antibody and cell recognition by fluorescence microscopy imaging technique. The lung carcinoma cells were identified easily with high efficiency using these antibody-coated NPs. By comparison with fluorescein isothiocyanate (FITC), dye-doped silica NPs display dramatically increased stability of fluorescence as well as photostability, as compared to the common organic dye, when under continuous irradiation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2012.04.041DOI Listing

Publication Analysis

Top Keywords

silica nps
12
covalent conjugation
8
conjugation avidin
8
dye-doped silica
8
nps
8
nps covalent
8
fluorescence microscopy
8
surface nps
8
silica
5
avidin
4

Similar Publications

Titanium dioxide nanoparticles as a promising tool for efficient separation of trace DNA via phosphate-mediated desorption.

Mikrochim Acta

September 2025

Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 Changsheng West Road, Hengyang, 421001, Hunan, China.

We systematically evaluated the DNA adsorption and desorption efficiencies of several nanoparticles. Among them, titanium dioxide (TiO₂) nanoparticles (NPs), aluminum oxide (Al₂O₃) NPs, and zinc oxide (ZnO) NPs exhibited strong DNA-binding capacities under mild conditions. However, phosphate-mediated DNA displacement efficiencies varied considerably, with only TiO₂ NPs showing consistently superior performance.

View Article and Find Full Text PDF

SiO NP promotes allergic gastritis induced by degranulation of mouse MC9 cell through AQP4-mediated impairment of SIRT3-TFAM deacetylation and mitochondrial autophagy.

J Hazard Mater

September 2025

College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR C

Silicon dioxide nanoparticles (SiO NPs) are a novel material with a wide range of applications whose cumulative effects in the body pose certain health risks. The types of gastric injuries caused by different-sized SiO NPs and their mechanisms, however, remain unclear. Based on this, we established a mouse subchronic exposure model (10 mg/kg/d, 21 consecutive days of tube-feeding) with different SiO NP sizes (50, 300, and 1000 nm) in conjunction with in vitro MC9 and BMMCs models (160 μg/mL exposure for 24 h) to explore the gastric injury mechanisms.

View Article and Find Full Text PDF

Zeolitic imidazolate framework-8 nanoparticles: A promising nano-antimicrobial agent for sustainable management of bacterial leaf streak in rice.

Pestic Biochem Physiol

November 2025

State Key Laboratory of Agricultural and Forestry Biosecurity & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China. Electronic address:

Rice bacterial leaf streak (BLS) caused by Xanthomonas oryzae pv. oryzicola (Xoc) significantly reduces rice yield and quality. Traditional chemical control methods often have limited efficacy and raise environmental concerns, highlighting the need for safer and more effective alternatives.

View Article and Find Full Text PDF

Label-free immunoassay based on chemiluminescence-functionalized magnetic mesoporous nanoparticles for rapid detection of neuron-specific enolase.

Mikrochim Acta

September 2025

The Third Affiliated Hospital of Anhui Medical University, The First People's Hospital of Hefei, Binhu Hospital of Hefei, Hefei, 230061, P. R. China.

Lung cancer, as one of the cancers with the highest morbidity and mortality rates in the world, requires accurate detection of its vital serum marker, neuron-specific enolase (NSE), which is a key challenge for early detection of lung cancer. However, traditional chemiluminescence immunoassay (CLIA) methods rely on labeled antibodies (Abs) and suffer from complex operations and high costs. In this work, a label-free CLIA based on CL-functionalized mesoporous magnetic nanoparticles (CuFeO@mSiO-Cys-Luminol-Au NPs) is developed for the rapid and sensitive detection of NSE.

View Article and Find Full Text PDF

Effects of SiO Nanoparticles and Polymers on the Rheology of Fluorine-Free Foam.

ACS Omega

August 2025

College of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.

To enhance the performance of fluorine-free firefighting foam, a mixed dispersion system comprising silica nanoparticles (SiO NPs), guar gum (GG), and surfactants was developed and systematically evaluated. Compared with systems containing only NPs or GG, the combined formulation significantly improved foam stability and rheological properties. The optimized GG-NPs formulation exhibited the lowest drainage volume and the highest storage modulus, indicating enhanced structural integrity.

View Article and Find Full Text PDF