Publications by authors named "Ziteng Liu"

Sludge bulking is a common issue in wastewater treatment plants (WWTPs) that can disrupt microbial communities and potentially impact the abundance and spread of antibiotic resistance genes (ARGs) within treatment systems. This study employed high-throughput 16S rRNA gene sequencing and metagenomic sequencing to examine the changes in microbial communities and ARGs in a WWTP during non-bulking and bulking periods. The results indicated that bacterial diversity decreased in bulking sludge while maintaining a high removal efficiency of conventional pollutants.

View Article and Find Full Text PDF

In the cultivation and production of tomato (Solanum lycopersicum L.), fruit cracking is a prevalent and detrimental issue that significantly impacts the esthetic quality and commercial value of the fruit. The complexity of the trait has resulted in a slow advancement in research aimed at identifying genes that influence tomato fruit cracking and the underlying regulatory mechanisms.

View Article and Find Full Text PDF

Tomato chlorosis virus (ToCV) is an emerging plant virus that poses a substantial threat to the cultivation of economically vital vegetable crops, particularly tomato (). Despite its substantial impact on crop yield, resistant or tolerant tomato germplasms have not been well documented, and the genetic basis of resistance to ToCV remains poorly understood. In this study, two wild accessions that were immune to ToCV and five accessions that were highly resistant to ToCV were identified from 58 tomato accessions.

View Article and Find Full Text PDF

Developing novel fluoroether electrolytes with high-voltage stability is an effective strategy to improve the performance of lithium metal batteries (LMB). However, the vast chemical space of fluoroether is underexplored due to the absence of effective tools to evaluate the potential used in high-voltage LMB. Herein, a framework was developed in combination of Voting ensemble algorithms and graph convolution neural network (GCNN), allowing the fast assessment of oxidative stability of non-aqueous liquid electrolytes, synthesizability of solvents as well as the solvation ability of them to dissolve lithium salts.

View Article and Find Full Text PDF

Rice physiological straighthead disease is induced by microbially mediated arsenic methylation and usually regionally distributed in paddy soils. However, the biogeochemical mechanism underlying the geographic distribution of microbial communities harboring methylating genes () remains unclear. Herein, we revealed significant ( = 0.

View Article and Find Full Text PDF

With the advent of the deep learning-based colonoscopy system, the need for a vast amount of high-quality colonoscopy image datasets for training is crucial. However, the generalization ability of deep learning models is challenged by the limited availability of colonoscopy images due to regulatory restrictions and privacy concerns. In this paper, we propose a method for rendering high-fidelity 3D colon models and synthesizing diversified colonoscopy images with abnormalities such as polyps, bleeding, and ulcers, which can be used to train deep learning models.

View Article and Find Full Text PDF

Arsenic (As) contamination and methane (CH) emissions co-occur in rice paddies. However, how As impacts CH production, oxidation, and emission dynamics is unknown. Here, we investigated the abundances and activities of CH-cycling microbes from 132 paddy soils with different As concentrations across continental China using metagenomics and the reverse transcription polymerase chain reaction.

View Article and Find Full Text PDF

Magnetic soft microrobots have a wide range of applications in targeted drug therapy, cell manipulation, and other aspects. Currently, the research on magnetic soft microrobots is still in the exploratory stage, and most of the research focuses on a single helical structure, which has limited space to perform drug-carrying tasks efficiently and cannot satisfy specific medical goals in terms of propulsion speed. Therefore, balancing the motion speed and drug-carrying performance is a current challenge to overcome.

View Article and Find Full Text PDF

Antibiotic resistance genes (ARGs) and metal(loid) resistance genes (MRGs) coexist in organic fertilized agroecosystems based on their correlations in abundance, yet evidence for the genetic linkage of ARG-MRGs co-selected by organic fertilization remains elusive. Here, an analysis of 511 global agricultural soil metagenomes reveals that organic fertilization correlates with a threefold increase in the number of diverse types of ARG-MRG-carrying contigs (AMCCs) in the microbiome (63 types) compared to non-organic fertilized soils (22 types). Metatranscriptomic data indicates increased expression of AMCCs under higher arsenic stress, with co-regulation of the ARG-MRG pairs.

View Article and Find Full Text PDF
Article Synopsis
  • Miniature resonant piezoelectric robots are garnering attention for their small size, quick response, and simple control, but often struggle with flexibility due to limited movement at their feet.
  • Drawing inspiration from earthworms, researchers designed a piezoelectric robot with feet arranged circumferentially to enhance adaptability and introduced a new actuation principle to mimic the earthworm's movement patterns.
  • The robot weighs 22.7 g, has compact dimensions, and can move at speeds up to 179.35 mm/s on diverse surfaces, showcasing its ability to navigate challenging environments effectively.
View Article and Find Full Text PDF

Cochlear implants (CIs) are considered the standard-of-care treatment for profound sensory-based hearing loss. Several groups have proposed computational models of the cochlea in order to study the neural activation patterns in response to CI stimulation. However, most of the current implementations either rely on high-resolution histological images that cannot be customized for CI users or CT images that lack the spatial resolution to show cochlear structures.

View Article and Find Full Text PDF

Biological experiments require precise temperature control, necessitating an integrated adjustable temperature system for instruments such as microscopes, microfluidic chambers, or custom incubators. We present a protocol for building a user-friendly temperature control system suitable for both in vitro and in vivo assays. We describe steps for preparing materials, assembling the printed circuit board and enclosure, and fine-tuning the heating algorithm for accuracy.

View Article and Find Full Text PDF

Piroxicam (PX) as a nonsteroidal anti-inflammatory drug (NSAID) can be effectively used for anti-inflammatory and analgesia. However, overdoses may induce side effects such as gastrointestinal ulcers and headaches. Therefore, the assay of piroxicam has considerable significance.

View Article and Find Full Text PDF

Aims: Circular RNAs (circRNAs) are important regulators in breast cancer progression. However, the underlying mechanism of circRNAs functions in breast cancer remain largely unclear.

Main Methods: To investigate the circRNAs expression pattern in breast cancer, high-throughput circRNA microarray assay was used.

View Article and Find Full Text PDF

A common problem with segmentation of medical images using neural networks is the difficulty to obtain a significant number of pixel-level annotated data for training. To address this issue, we proposed a semi-supervised segmentation network based on contrastive learning. In contrast to the previous state-of-the-art, we introduce Min-Max Similarity (MMS), a contrastive learning form of dual-view training by employing classifiers and projectors to build all-negative, and positive and negative feature pairs, respectively, to formulate the learning as solving a MMS problem.

View Article and Find Full Text PDF

The injection of CO into oil reservoirs to enhance oil recovery (EOR) has become a widely accepted and effective technical method, which, however, remains subject to the gas channeling caused by the reservoir fractures. Herein, this work developed a novel plugging gel combining excellent mechanical properties, fatigue resistance, elastic and self-healing properties for the CO shutoff purpose. This gel consisting of grafted nanocellulose and polymer network was synthesized via a free-radical polymerization, and reinforced by using Fe to cross-link the two networks.

View Article and Find Full Text PDF

A novel fluorescence chemical sensor-based probe 1-{[(E)-(2-aminophenyl)azanylidene]methyl}naphthalen-2-ol (AMN) was designed and synthesized, which performed a "naked eye" detection ability toward Cu and Co based on aggregation-induced emission (AIE) fluorescence strategy. It has sensitive detection ability for Cu and Co. In addition, the color changed from yellow-green to orange under the sunlight, realizing the rapid identification of Cu/Co, which has the potential of on-site visual detection under the "naked eye".

View Article and Find Full Text PDF

Persistent Organic Pollutants (POPs) may exert adverse effects on human and ecosystem health. However, as an ecologically fragile zone with strong interaction between river and groundwater, the POPs pollution in the riparian zone has received little attention. The goal of this research is to examine the concentrations, spatial distribution, potential ecological risks, and biological effects of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in the riparian groundwater of the Beiluo River, China.

View Article and Find Full Text PDF

Image-guided surgery has been proven to enhance the accuracy and safety of minimally invasive surgery (MIS). Nonrigid deformation tracking of soft tissue is one of the main challenges in image-guided MIS owing to the existence of tissue deformation, homogeneous texture, smoke and instrument occlusion, etc. In this paper, we proposed a piecewise affine deformation model-based nonrigid deformation tracking method.

View Article and Find Full Text PDF

Fast and accurate estimation of lipophilicity for organofluorine molecules is in great demand for accelerating drug and materials discovery. A lipophilicity data set of organofluorine molecules (OFL data set), containing 1907 samples, is constructed through density functional theory (DFT) calculations and experimental measurements. An efficient and interpretable model, called PoLogP, is developed to predict the -octanol/water partition coefficient, log , of organofluorine molecules on the basis of the descriptors of polarization, which is a combination of polarity descriptors, including the molecular polarity index and molecular polarizability (α), and hydrogen bond (HBs) index, consisting of the number of donors () and acceptors ( and ).

View Article and Find Full Text PDF

Efficient prediction of the partition coefficient (log ) between polar and non-polar phases could shorten the cycle of drug and materials design. In this work, a descriptor, named 〈 - ACSFs〉, is proposed to take the explicit polarization effects in the polar phase and the conformation ensemble of energetic and entropic significance in the non-polar phase into consideration. The polarization effects are involved by embedding the partial charge directly derived from force fields or quantum chemistry calculations into the atom-centered symmetry functions (ACSFs), together with the entropy effects, which are averaged according to the Boltzmann distribution of different conformations taken from the similarity matrix.

View Article and Find Full Text PDF

Background: Accurate and real-time biomechanical modelling of the liver is a major challenge in computer-assisted surgery. Finite element method is often used to predict the deformation of organs for its high modelling accuracy. However, its high computation cost hinders its application in real time, such as virtual surgery simulations.

View Article and Find Full Text PDF