Publications by authors named "Zhiyong Qian"

The immune system plays a pivotal role in bone regeneration, and biomaterials engineered to modulate immune responses present a promising strategy for the treatment of extensive bone defects and osteolytic conditions. This review critically evaluates recent advancements in immunomodulatory biomaterials for bone repair, integrating perspectives from both immunology and materials science. It offers a comprehensive analysis of key design strategies and the underlying principles guiding the development of these biomaterials, with a particular focus on their physical and chemical properties, bioactive molecule delivery systems, cell transplantation techniques, and responses to external stimuli.

View Article and Find Full Text PDF

Chimeric antigen receptor T (CAR-T) cells have reshaped the treatment landscape of hematological malignancies, offering a potentially curative option for patients. Despite these major milestones in the field of immuno-oncology, growing experience with CAR-T cells has also highlighted several limitations of this strategy. The production process of CAR-T cells is complex, time-consuming, and costly, thus leading to poor drug accessibility.

View Article and Find Full Text PDF

Aims: Left bundle branch pacing is effective for cardiac resynchronization therapy (CRT), but the role of left ventricular septal pacing (LVSP) for CRT remains controversial due to lack of LBB capture. We hypothesized that combining LVSP with LV pacing (LVP) may provide additional benefits.

Methods And Results: This prospective observational study enrolled consecutive patients undergoing LVSP for CRT.

View Article and Find Full Text PDF

Intestinal anastomosis is indispensable for treating inflammatory bowel disease and colorectal cancer, yet anastomotic leakage (AL) remains a frequent, life-threatening complication that markedly prolongs hospitalization. Conventional suturing affords limited protection against leakage and infection. Here, we report an injectable, multifunctional hydrogel (PGOT) composed of γ-poly(glutamic acid) conjugated with L-cysteine and dopamine (γ-PGA-Cys-DA), oxidized konjac glucomannan (OKGM), and tannic acid (TA).

View Article and Find Full Text PDF

Sonodynamic therapy (SDT) offers a new, non-invasive therapeutic choice for melanoma. However, direct use of sonosensitizer like chlorin e6 (Ce6) may face problems like poor drug solubility and off-target effects. Besides, using SDT alone may be deficient to treat melanoma.

View Article and Find Full Text PDF

Corneal collagen cross-linking (CXL) is an effective surgical approach to halt the progression of keratoconus. A key challenge lies in maintaining epithelial integrity while achieving sufficient stromal riboflavin (RF) concentration to ensure CXL efficacy. Additionally, the efficacy of CXL under RF-mediated cross-linking still has room for improvement.

View Article and Find Full Text PDF

The study aimed to fabricate and evaluate a bone tissue engineering scaffold made from a composite of polylactic-co-glycolic acid (PLGA), nano-hydroxyapatite (nHA), and graphene oxide (GO) using low-temperature 3D printing and freeze-drying techniques. The scaffolds were produced with varying compositions: PLGA alone and in combination with nHA and GO. The macro and microstructure, pore size, porosity, mechanical properties, and in vitro biocompatibility were assessed.

View Article and Find Full Text PDF

Tension-free synthetic meshes are the clinical standard for hernia repair, but they often trigger immune response-mediated complications such as severe foreign-body reactions (FBR), visceral adhesions, and fibrotic healing, increasing the risk of recurrence. Herein, we developed a hybrid cell membrane coating for macroscale mesh fibers that acts as an immune orchestrator, capable of balancing immune responses with tissue regeneration. Cell membranes derived from red blood cells (RBCs) and platelets (PLTs) were covalently bonded to fiber surfaces using functionalized-liposomes and click chemistry.

View Article and Find Full Text PDF

Postoperative adhesions are inevitable consequences of surgery, resulting in various complications. The risk increases, particularly in cardiac surgery, where reoperations or staged operations are in high demand. The presence of cardiac adhesions severely complicates resternotomy procedures, which may increase the risk of re-traumatizing, bleeding, operation time extension, and even mortality.

View Article and Find Full Text PDF

Glioblastoma represents a highly aggressive form of malignant tumor within the central nervous system. Although chemotherapy remains the primary therapeutic strategy, its efficacy is often limited. To overcome the limitations associated with chemotherapeutic agents, such as high toxicity and non-specific adverse effects, a novel nanoparticle system comprising cRGD-modified and glutathione (GSH)-responsive polymers, and PEG-ss-Dox and apatinib (AP) (PDOX-AP/cRGD-NPs) is developed.

View Article and Find Full Text PDF

Soybeans provide a nutritionally complete plant-based protein, containing all nine essential amino acids and bioactive compounds. The food safety of a novel triple-stacked genetically modified (GM) soybean, DBN9004 × DBN8002 × DBN8205 was evaluated in a 90-day rat feeding study. The GM soybean, developed through conventional hybridization of three GM lines (DBN9004, DBN8002 and DBN8205), incorporates genes conferring resistance to glyphosate (epsps), glufosinate (pat), and lepidopteran pests (cry1Ac, cry2Ab2, and mVip3Aa).

View Article and Find Full Text PDF

Injectable carbonated hydroxyapatite (ICHA) cement was developed by adding 2% Hydroxypropyl methylcellulose (HPMC) to carbonated hydroxyapatite (CHA) cement, improving its rheological properties and injectability for minimally invasive orthopedic use. The cement's physical and chemical properties, including curing time, strength, porosity, and consistency, were tested in vitro. Scanning electron microscopy, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) were used to analyze the cured cement.

View Article and Find Full Text PDF

Phenylboronic acid (PBA) has emerged as a promising component in the design of functional nanomaterials for cancer treatment. PBA possesses unique characteristics such as pH/reactive oxygen species (ROS)-responsiveness, low cytotoxicity, stability, and the ability to target sialic acid residues overexpressed on cancer cell surfaces. PBA-modified nanomaterials can be utilized in various strategies, including chemotherapy, gene therapy, and phototherapy, to enhance drug delivery, cancer cell targeting, and therapeutic efficacy.

View Article and Find Full Text PDF

Breast cancer is the most prevalent and lethal malignancy among females, with a critical need for safer and less invasive treatments. Photodynamic therapy (PDT) can effectively eliminate tumor cells with minimal side effects. Furthermore, the combination of PDT and immunotherapy using nanoparticles has shown promise in treating both primary and distant metastatic tumor cells.

View Article and Find Full Text PDF

Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases and is associated with Alzheimer's disease (AD). Both docosahexaenoic acid (DHA) and medium chain triglycerides (MCTs) play essential roles in lipid metabolism and the inhibition of amyloid-β (Aβ) accumulation. We aimed to explore the possible association between cerebral Aβ deposition and the development of NAFLD and to investigate the effect of DHA combined with MCTs on delaying NAFLD progression and Aβ accumulation.

View Article and Find Full Text PDF

Infectious bone defects represent a substantial challenge in clinical practice, necessitating the deployment of advanced therapeutic strategies. This study presents a treatment modality that merges a mild photothermal therapy hydrogel with a pulsed drug delivery mechanism. The system is predicated on a hydrogel matrix that is thermally responsive, characteristic of bone defect sites, facilitating controlled and site-specific drug release.

View Article and Find Full Text PDF

Mid-low rectal cancer is one of the most common types of rectal cancer and has a poor prognosis. Surgery and chemoradiotherapy are the main treatments for early and advanced rectal cancer with an overall 5-year relative survival rate of only 56.9%.

View Article and Find Full Text PDF

Cancer remains a major health challenge, with the effectiveness of chemotherapy often limited by its lack of specificity and systemic toxicity. Nanotechnology, particularly in targeted drug delivery, has emerged as a key innovation to address these limitations. This study introduces lipoic acid-boronophenylalanine (LA-BPA) derivatives that incorporate short-chain polyethylene glycol (PEG) as a spacer.

View Article and Find Full Text PDF

The multi-administration of recombinant adeno-associated virus (rAAV) is limited largely by immunological barriers. Herein, a novel strategy, named rAAV pseudo-lipid nanoparticle combined with triamcinolone acetonide (LNP-rAAV + TAC), has been described in mice. We showed successful but low efficient triple trafficking by LNP-rAAV2 carrying EGFP, human factor IX (hFIX), and luciferase (luc), due to its encapsulation characteristic.

View Article and Find Full Text PDF

A novel multi-site enzymatic repairing amplification strategy is developed for high-sensitive terminal deoxynucleotidyl transferase quantification through combining enzymatic repairing amplification and lesion base-involved terminal extension. This method may provide a sensitive and flexible tool for molecular diagnosis and drug discovery.

View Article and Find Full Text PDF

Reactive oxygen species (ROS)-responsive drug delivery systems (DDSs) have garnered significant attention in cancer research because of their potential for precise spatiotemporal drug release tailored to high ROS levels within tumors. Despite the challenges posed by ROS distribution heterogeneity and endogenous supply constraints, this review highlights the strategic alliance of ROS-responsive DDSs with photodynamic therapy (PDT), enabling selective drug delivery and leveraging PDT-induced ROS for enhanced therapeutic efficacy. This review delves into the biological importance of ROS in cancer progression and treatment.

View Article and Find Full Text PDF

Acute kidney injury (AKI) is a common clinical syndrome characterized by the rapid loss of renal filtration function. No standard therapeutic agent option is currently available. The development and progression of AKI is a continuous and dynamical pathological process.

View Article and Find Full Text PDF

Titanium (Ti) implants have become widespread especially in dentistry and orthopedics, where macrophage-driven osteoimmunomodulation is crucial to their success. Hydrophilic modification of Ti represents a promising strategy to enhance its immune and osteogenic responses. Herein, the osteoimmunomodulatory performance and integrin-mediated mechanism of novel non-thermal atmospheric plasma (NTAP) treatment to induce a hydrophilic Ti were investigated for the first time.

View Article and Find Full Text PDF

Cancer vaccines have garnered attention as a potential treatment for cancer metastases. Nevertheless, the clinical response rate to vaccines remains < 30%. Nanoparticles stabilize vaccines and improve antigen recognition and presentation, resulting in high tumor penetration or accumulation, effective co-distribution of drugs to the secondary lymphatic system, and adaptable antigen or adjuvant administration.

View Article and Find Full Text PDF