Front Bioeng Biotechnol
April 2025
Introduction: Adult wound scarring result in functional skin deficits. However, the development of effective measures to modulate the entire wound healing to encourage the skin function reconstruction is still a clinical challenge, as multiple cells are involved in wound healing hierarchically. Hydrogel scaffolds with long-lasting local release provide new insights into the clinical relevance of entire wound healing.
View Article and Find Full Text PDFThis paper describes a new species of macrophagous terrestrial leech distributed in Wuling Mountain area in Central China. On the basis of morphological and structural observation, mitochondrial cytochrome c oxidase subunit I (COI) gene sequence analysis and phylogenetic tree inference, this leech was identified as a new species of the genus Odontobdella in the family Salifidae, and named Odontobdella gaowangjiensis sp. nov.
View Article and Find Full Text PDF5-hydroxymethylcytosine (5hmC) plays a pivotal role in the DNA demethylation pathway and transcriptional regulation. While sequencing-based methods such as TET-assisted bisulfite sequencing offer single-base resolution, they are not ideal for dynamic, time-sensitive quantification. Here, we present a novel enzymatic biosensing strategy leveraging T7 endonuclease I for rapid and locus-specific 5hmC detection with a single-base resolution.
View Article and Find Full Text PDFBackground: Cavefish exhibit significant morphological changes that result in trade-offs in metabolic requirements and energy utilization in perpetual darkness. As cellular "powerhouses", mitochondria play crucial roles in energy metabolism, suggesting that mitochondrial genes have likely experienced selective pressures during cavefish evolution.
Results: This study presents the first assembly of the complete mitogenome of Triplophysa yangi, a typical cavefish species in China.
Metallizing active sites to control the structural and kinetic dissociation of water at the catalyst-electrolyte interface, along with elucidating its mechanism under operating conditions, is a pivotal innovation for the hydrogen evolution reaction (HER). Here, a design of singly dispersed Pt-Co sites in a fully metallic state on nanoporous CoP, tailored for HER, is introduced. An anion-exchange-membrane water electrolyzer equipped with this catalyst can achieve the industrial current densities of 1.
View Article and Find Full Text PDFPesticides released into the environment are increasingly recognized as a global threat to freshwater ecosystems because of their adverse effects on non-target organisms, particularly aquatic insects and other arthropods. Superoxide dismutases (SODs) are important antioxidant enzymes that play a crucial role in protecting organisms from oxidative stress induced by harmful materials. In this study, we identified 2 cellular SODs (PxSOD1 and PxSOD2) in Protohermes xanthodes Navás (Megaloptera: Corydalidae), an freshwater predatory insect, and determined the oxidative stress induced in P.
View Article and Find Full Text PDFKarst caves are a unique environment significantly different from the external environment; adaptation of cave-dwelling animals to the cave environment is often accompanied by shifts in the sensory systems. Aquatic and terrestrial leeches have been found in the karst caves. In this study, we conducted a transcriptome analysis on the cave-dwelling leech .
View Article and Find Full Text PDFEpigenetic regulation of metabolism profoundly influences cell fate commitment. During osteoclast differentiation, the activation of RANK signaling is accompanied by metabolic reprogramming, but the epigenetic mechanisms by which RANK signaling induces this reprogramming remain elusive. By transcriptional sequence and ATAC analysis, this study identifies that activation of RANK signaling upregulates PRMT6 by epigenetic modification, triggering a metabolic switching from fatty acids oxidation toward glycolysis.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Aqueous Zn-S batteries (AZSBs) have garnered increasing attention in the energy storage field owing to their high capacity, energy density, and cost effectiveness. Nevertheless, sulfur (S) cathodes face challenges, primarily stemming from sluggish reaction kinetics and the formation of an irreversible byproduct (SO) during the charge, hindering the progress of AZSBs. Herein, Te-S bonds within S-based cathodes were introduced to enhance electron and ion transport and facilitate the conversion reaction from zinc sulfide (ZnS) to S.
View Article and Find Full Text PDFJ Nanobiotechnology
March 2024
Androgenic alopecia (AGA) is a highly prevalent form of non-scarring alopecia but lacks effective treatments. Stem cell exosomes have similar repair effects to stem cells, suffer from the drawbacks of high cost and low yield yet. Cell-derived nanovesicles acquired through mechanical extrusion exhibit favorable biomimetic properties similar to exosomes, enabling them to efficiently encapsulate substantial quantities of therapeutic proteins.
View Article and Find Full Text PDFJ Phys Chem Lett
November 2023
Heteroatom incorporation can effectively suppress the phase transition of layered sodium-ion battery cathode, but heteroatom behaviors during operating conditions are not completely understood at the atomic scale. Here, density functional theory calculations are combined with experiments to explore the mitigation behavior of Mg dopant and its mechanisms under operating conditions in P2-NaNiMnO. The void formed by Na extraction will pump some Mg dopants into Na layers from TM layers, and the collective diffusion of more than one Mg ion most likely occurs when the Mg content is relatively high in the TM layer, finally aggregating to form Mg-enrich regions (i.
View Article and Find Full Text PDFThe JAK/STAT signaling pathway is the main inflammatory signal transduction pathway, whether JAK/STAT contributes the pathology of SCI and targeting the pathway will alleviate SCI needs to be addressed. Here, we explored the therapeutic effect of pan-JAK inhibitor tofacitinib (TOF) on secondary injury after SCI and explained the underlying mechanisms. SCI model in rat was established to evaluate the therapeutic effects of TOF treatment .
View Article and Find Full Text PDFNano Lett
August 2023
Longevity of Li ion batteries strongly depends on the interaction of transporting Li ions in electrode crystals with defects. However, detailed interactions between the Li ion flux and structural defects in the host crystal remain obscure due to the transient nature of such interactions. Here, by in situ transmission electron microscopy and density function theory calculations, we reveal how the diffusion pathways and transport kinetics of a Li ion can be affected by planar defects in a tungsten trioxide lattice.
View Article and Find Full Text PDFObjectives: Alopecia areata (AA) is an autoimmune-related non-cicatricial alopecia, with complete alopecia (AT) or generalized alopecia (AU) as severe forms of AA. However, there are limitations in early identification of AA, and intervention of AA patients who may progress to severe AA will help to improve the incidence rate and prognosis of severe AA.
Methods: We obtained two AA-related datasets from the gene expression omnibus database, identified the differentially expressed genes (DEGs), and identified the module genes most related to severe AA through weighted gene co-expression network analysis.
Small
October 2023
Hard Carbon have become the most promising anode candidates for sodium-ion batteries, but the poor rate performance and cycle life remain key issues. In this work, N-doped hard carbon with abundant defects and expanded interlayer spacing is constructed by using carboxymethyl cellulose sodium as precursor with the assistance of graphitic carbon nitride. The formation of N-doped nanosheet structure is realized by the CN• or CC• radicals generated through the conversion of nitrile intermediates in the pyrolysis process.
View Article and Find Full Text PDFPhys Chem Chem Phys
May 2023
Li-O batteries are considered promising electrochemical energy storage devices due to their high specific capacity and low cost. However, this technology currently suffers from two serious problems: low round-trip efficiency and slow reaction dynamics at the cathode. Solving these problems requires designing novel catalysis materials.
View Article and Find Full Text PDFStem cell-based therapy has drawn attention as an alternative option for promoting prosthetic osteointegration in osteoporosis by virtue of its unique characteristics. However, estrogen deficiency is the main mechanism of postmenopausal osteoporosis. Estrogen, as an effective antioxidant, deficienncy also results in the accumulation of reactive oxygen species (ROS) in the body, affecting the osteogenic differentiation of stem cells and the bone formation i osteoporosis.
View Article and Find Full Text PDFSingle-atom catalysts have attracted extensive attention due to their unique atomic structures and extraordinary activities in catalyzing chemical reactions. However, the lack of general and efficient approaches for producing high-density single atoms on suitably tailored supporting matrixes hinders their industrial applications. Here, a rapid melt-quenching strategy with high throughput to synthesize single atoms with high metal-atom loadings of up to 9.
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2022
In this work, based on first-principles calculations, we theoretically predict two kinds of two-dimensional tetragonal Si-Se compounds, SiSe and SiSe, as the anode materials for alkali metal-ion batteries. The results show that SiSe and SiSe are thermally and dynamically stable and have good electronic conductivity. The diffusion barriers of Li, Na and K atoms are 0.
View Article and Find Full Text PDFBackground: Chronic inflammatory pain significantly reduces the quality of life and lacks effective interventions. In recent years, human umbilical cord mesenchymal stem cells (huc-MSCs)-derived exosomes have been used to relieve neuropathic pain and other inflammatory diseases as a promising cell-free therapeutic strategy. However, the therapeutic value of huc-MSCs-derived exosomes in complete Freund's adjuvant (CFA)-induced inflammatory pain remains to be confirmed.
View Article and Find Full Text PDFFront Bioeng Biotechnol
June 2022
A hydrogel system loaded with mesenchymal stem cell-derived exosome (MSC-Exos) is an attractive new tool for tissue regeneration. However, the effect of the stiffness of exosome-loaded hydrogels on tissue regeneration is unclear. Here, the role of exosome-loaded hydrogel stiffness, during the regeneration of injured nerves, was assessed .
View Article and Find Full Text PDFBiochem Biophys Rep
September 2022
Physical cues in the extracellular microenvironment regulate cancer cell metastasis. Functional microRNA (miRNA) carried by cancer derived exosomes play a critical role in extracellular communication between cells and the extracellular microenvironment. However, little is known about the role of exosomes loaded miRNAs in the mechanical force transmission between cancer cells and extracellular microenvironment.
View Article and Find Full Text PDFFront Bioeng Biotechnol
May 2022
Loading human umbilical mesenchymal stem cell (hUMSC) derived exosomes onto hydrogel scaffolds is a strategy for rapid wound healing. The clinical application of exosomes is hindered by low production, and exosome mimetics could be substituted for exosomes. Here, the therapeutic effects of exosome-loaded hydrogels and exosome mimetic-loaded hydrogels on wounds are evaluated.
View Article and Find Full Text PDFNa V (PO ) F has attracted wide attention due to its high voltage platform, and stable crystal structure. However, its application is limited by the low electronic conductivity and the ease formation of impurity. In this paper, the spherical Br-doped Na V (PO ) F /C is successfully obtained by a one-step spray drying technology.
View Article and Find Full Text PDF