In Situ Visualization of the Pinning Effect of Planar Defects on Li Ion Insertion.

Nano Lett

Physcial and Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.

Published: August 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Longevity of Li ion batteries strongly depends on the interaction of transporting Li ions in electrode crystals with defects. However, detailed interactions between the Li ion flux and structural defects in the host crystal remain obscure due to the transient nature of such interactions. Here, by in situ transmission electron microscopy and density function theory calculations, we reveal how the diffusion pathways and transport kinetics of a Li ion can be affected by planar defects in a tungsten trioxide lattice. We uncover that changes in charge distribution and lattice spacing along the planar defects disrupt the continuity of ion conduction channels and dramatically increase the energy barrier of Li diffusion, thus, arresting Li ions at the defect sites and twisting the lithiation front. The atomic-scale understanding holds critical implications for rational interface design in solid-state batteries and solid oxide fuel cells.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.3c00712DOI Listing

Publication Analysis

Top Keywords

planar defects
12
defects
5
ion
5
situ visualization
4
visualization pinning
4
pinning planar
4
defects ion
4
ion insertion
4
insertion longevity
4
longevity ion
4

Similar Publications

Influence of the Metal Support─Catalyst Contact on the Performance of NiO-Based O Evolution Electrocatalysts.

ACS Appl Mater Interfaces

September 2025

Surface Science Laboratory, Department of Materials and Geosciences, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.

The performance of NiO-based electrocatalysts for the oxygen evolution reaction (OER) is strongly influenced by the interface between the metal support (current collector) and the catalyst layer, which modulates electronic properties and electrochemical activity. This study systematically investigates the solid-solid interface behavior of NiO thin films prepared by reactive magnetron sputtering on Pt, Au, and Ni, followed by electrochemical characterization. Stepwise NiO deposition and X-ray photoelectron spectroscopy reveal distinct band alignment and electronic structure differences at the metal-catalyst interface.

View Article and Find Full Text PDF

Plasticity Mechanisms in Nanostructured Cubic Boron Nitride: Internal Defects and Amorphous Layers.

ACS Appl Mater Interfaces

September 2025

School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China.

Nanostructured cubic boron nitride (NS-cBN) has attracted significant attention due to its high hardness and excellent thermal stability, yet a systematic strategy to balance strength and toughness through atomically structural design remains elusive. Here, we integrate plasticity theory with large-scale atomistic simulations to elucidate the size-dependent roles of internal defects, i.e.

View Article and Find Full Text PDF

Differentiating electron diffuse scattering via 4D-STEM spatial fluctuation and correlation analysis in complex FCC alloys.

Ultramicroscopy

August 2025

Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304W. Green Street, Urbana 61801, IL, USA; Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 South Goodwin Avenue, Urbana 61801, IL, USA. Electronic address:

Complex face-centered-cubic (FCC) alloys frequently display chemical short-range ordering (CSRO), which can be detected through the analysis of diffuse scattering. However, the interpretation of diffuse scattering is complicated by the presence of defects and thermal diffuse scattering, making it extremely challenging to distinguish CSRO using conventional scattering techniques. This complexity has sparked intense debates regarding the origin of specific diffuse-scattering signals, such as those observed at 1/3{422} and 1/2{311} positions.

View Article and Find Full Text PDF

Thrombocytopenia-Absent Radius (TAR) syndrome is a rare congenital condition with reduced platelets, forelimb anomalies, and variable heart and kidney defects. TAR syndrome is caused by mutations in RBM8A/Y14, a component of the exon junction complex. How perturbing a general mRNA-processing factor causes the selective TAR Syndrome phenotypes remains unknown.

View Article and Find Full Text PDF

Integrative Analysis of Key Signalling Pathways in Neural Tube Defects: From Molecular Mechanisms to Therapeutic Strategies.

Int J Dev Neurosci

September 2025

Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China.

Neural tube defects (NTDs), such as anencephaly and spina bifida, are prevalent congenital anomalies of the central nervous system. These defects can give rise to severe lifelong disabilities and incur substantial healthcare expenses for the affected individuals. The occurrence of NTDs is caused by multiple factors, including molecular regulatory mechanisms and environmental factors.

View Article and Find Full Text PDF